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Abstract

Prediction and expansion of biological pathways from perturbation effects

by

Charles J. Vaske

Complex phenotypes, such as cancer invasion, result from the actions and interac-

tions of many genes and gene products. Though pathway-based analysis can offer

improved predictions over single-gene or set-of-gene analyses, few pathways have been

characterized. New high-throughput technology offers the opportunity for individual

investigators to learn entire pathways from a small number of gene perturbation and

gene expression experiments. I present two pathway inference methods using data

from downstream perturbation effects and use the inferred structures to predict novel

pathway members in cancer invasion and Vibrio cholerae biofilm.

In a V. cholerae system, microarray gene expression data under gene per-

turbations from deletion knockouts was analyzed using a new method called a Joint

Intervention Network. This analysis resulted in an inferred regulatory network of the

perturbed genes, and prediction of biofilm-associated genes that was more accurate

than a correlation-based method.

I next developed a signed version of the Nested Effects Model and an associ-

ated efficient structure inference method, named Factor Graph-Nested Effects Model

(FG-NEM). On synthetic data I show improved performance of FG-NEM over unsigned

versions of the algorithm. In yeast, FG-NEM predicts Gene Ontology categories more

accurately than a correlation-based method. And finally, in a cancer cell line I predicted

an invasion network and identified fourteen new genes necessary for cancer invasion.
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Background
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Chapter 1

Biological Networks and Processes

Biological networks aim to describe the large scale activity of cells in terms of

the interactions of a cell’s components. Discoveries in molecular biology have told us

that these activities are performed by various classes of biological entities: e.g. DNA,

RNA, proteins, membranes, and small molecules. Molecular biology has also informed

us of many common types interactions that happen between biological entities. Thus,

“biological network” is a rather broad term, that can refer to a description of how a

complex mulitigenic phenotype arises from genotype, to a simple biochemical reaction

involving only an enzyme, substrate molecule, and a product molecule.

This network representation of biological processes, specifically a graph rep-

resentation, pervades system biology [112]. The dominant machine-readable formats,

SBML [55, 32], BioPAX [81, 126], PSI MI [51] and CellML [23] all describe biological

processes as graphs, but each format places different emphases on structure, dynamics,

and supporting evidence.
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In this dissertation, I will focus on three primary interaction classes: com-

plex formation, gene regulation, and signal transduction. A fourth class of interaction,

biochemical reaction, is important and represented in nearly all systems biology on-

tologies, but there is currently no high-throughput assay that allows for computational

predictions of such reactions, so I will not treat them explicitly. In the sense that

1.1 Multi-molecule bonding and complexes

Often, multiple molecules of RNA, DNA, or protein act together as a single

entity in a biological process. When these molecules stably bond, it is referred to as a

complex. Networks model both the individual components and the complex.

As an example, the ribosome is a complex that consists of a stable core of

two major RNA units and many proteins. Humans have approximately 80 ribosomal

proteins [125] and E. coli have more than 50 [3]. This core complex is stable enough

to exist while the ribosome is not performing translation, and to be isolated from cell

extracts. During translation, additional proteins and RNAs associate with the ribosome

in a more transient manner. Biological networks attempt to capture and describe not

only the stable parts of the complex, but also the transient associations.

The spliceosome, like the ribosome, consists of both RNA and protein, but

instead of being a stable complex, assembles as needed. This complex removes introns

from precursor mRNAs as part of mRNA processing. The spliceosome can be modeled

as a complex of complexes, each referred to in general as small nuclear ribonucleopro-

3



teins (snRNPs). Full complex assembly is performed in sequential steps, delimited by

ATP-dependent energy wells [98].

1.2 Gene regulation

As the first step in the physical link between genotype and phenotype, the

determining factor between morphologically distinct cells/tissues in the same organism,

and perhaps the major evolutionary difference between humans and their closest neigh-

bors [72], gene regulation features prominently in the structure of biological networks.

Gene regulation refers to the production of an active product from a single genomic

locus, where the product is a protein or RNA. There are known examples of gene

regulation occurs at nearly all instantiations of a gene: controlling of transcription

of the gene, modulation of the steps in between transcription and translation, post-

translational modifications of protein, and protein degradation. Biological networks

can model the state of the regulatory elements, the presence or abundance of active

gene product, and the state of the gene product intermediates, though the simplest

networks model only the presence of the final gene product. Often, models of gene

regulation will not state the exact mechanism of regulation. A gene regulation network

may elide some elements in a chain of multiple steps of regulation. For example, if a

protein A activates chromatin machinery to silence a gene b, preventing the protein B

from activating transcription of gene c, then it may be said that a regulates c.

Both activation and inhibition are important aspects of regulation, and both

4
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protein

gene
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Figure 1.1: Gene regulation in the E. coli lactose metabolism pathway. Biological
entities are labeled with text, and arrows indicate interactions between entities.

are found extensively in gene regulation networks. As an example of gene regulation, I

will describe the regulation of the E. coli lac operon. Prior to discovery of the lac operon,

it was known that some enzymes in bacteria would only be produced when needed. The

work of Jacob and Monod [64] on the lac operon was the first characterization of gene

regulation. E. coli activates this network only when its preferred sugar, glucose, is

not present. In the presence of lactose and absence of glucose, E. coli uses the lac

operon to convert lactose to glucose. The network that includes the lac operon exhibits

activation, inhibition, multiple types of components, extra-cellular signaling, and cycles.

This network has all the characteristics that I aim to predict in this dissertation.

Figure 1.1 shows a cartoon of the lac operon network. The two proteins in-

volved in this network, LacI and LacZ, are an inhibitory regulator and an enzyme

respectively. The nodes allolactose and lactose are both small molecules. The node

lacZYA is an operon, a gene with multiple protein products. The tee-arrow (a) in-

dicates that the presence of LacI inhibits lacZYA. Similarly, the tee-arrow from node

allolactose to node LacI indicates that the biochemical observation that allolactose in-

5



hibits LacI, preventing it from acting. The arrow (→) from node lacZYA to node LacZ

indicates “activation,” which mean that the target of the link, LacZ, is also activated,

here by transcription and translation. There are two arrows into the allolactose node,

one from LacZ and one from lactose, both indicating activation. In my representation

of networks, the presence of more than one link into a node indicates that their effects

combine “multiplicatively.” This means that when the incoming links are activation,

all of the regulators must be present in order for the regulatee to be activated. In this

case, it has been experimentally observed that LacZ converts lactose into allolactose,

and that the presence of both enzyme and substrate are necessary for the product.

Recall that the enzyme for conversion of lactose, LacZ, is only active when

the substrate is present, meaning the LacZ is regulated by lactose. The cycle in the

network explains how LacZ is regulated and produced in only the proper conditions.

The cycle in the network consisting of nodes LacI, lacZYA, LacZ, and allolactose, is

regulated by the upstream node lactose. Ignoring this upstream node, the sequence

of links in the cycle dictates two consistent solutions for the presence/activation and

absence/inactivation of the entities: { LacI = inactive, lacZYA = active, LacZ =

present, allolactose = present} and { LacI = active, lacZYA = inactive, LacZ =

absent, allolactose = absent}. When we consider the link from the node lactose to

node allolactose we see that in the absence of lactose then allolactose must also be

absent, and therefore node LacI must be active and node lacZYA inactive. When the

node lactose is present, the other solution is consistent, as long as LacZ is also present.

If there is absolutely no LacZ, then the addition of lactose will not change the system.

6



The usage of all these terms is very loose, and such looseness is necessary in

order to have a generalized way of talking about these systems. The concept of “pres-

ence” and “absence” is different for different entities in the system. When referring to

node LacI, the active and inactive refer to its ability to inhibit node lacZYA. Biologi-

cally, LacI binds the promoter of the lacZ gene, preventing transcription. Biochemically

it was observed that allolactose is an allosteric effector of LacI, and when bound LacI

can no longer bind the promoter, making LacI “inactive.” However, when referring to

LacZ, allolactose, and lactose, the terms “presence” and “absence” mean that the

cell has a larger or smaller quantity of the entity. And though I refer to node LacZ as

“absent,” it is never entirely absent biologically, even in the absence of lactose. This

is because lacZYA is expressed whenever not bound by LacI, and LacI binds loosely

enough for a few errant transcripts to occur, resulting in a small amount of endogenous

LacZ. This small amount allows the cycle to switch to the solution with allolactose

present when lactose is introduced to the network.

Transcriptional repressors such as LacI are just one type of a larger class called

transcription factors. There are also transcriptional activators, that increase the rate

of transcription. Transcription factors act on cis-regulatory elements, DNA sequences

that are on the same DNA molecule that contains the gene.

Eukaryotes have a very rich toolbox for regulating gene expression beyond

cis-regulatory elements. The methods of regulation in eukaryotes include chromatin

structure/domains [68], DNA methylation and imprinting [100], microRNAs [50] and

RNA mediated interference [33], nonsense-mediated decay [78], and even the three-

7



dimensional organization of chromosomes in the nucleus [34]. Many of these regulatory

methods have only been recently discovered, and advances in molecular biology may

discover yet more.

1.3 Signal transduction

Signal transduction is the process of a cell turning the perception of some-

thing external, usually a molecule, into a response inside the cell. This response will

almost always be energy dependent, and often involve protein phosphorylation. In this

section I will first describe how the E. coli lac network performs a function like signal

transduction. Then, I will explain some of what is known about signal transduction in

the datasets that I use later in this dissertation.

Figure 1.2 shows an elaborated network for the lac operon. The core com-

ponents are LacI, lacZYA, LacZ, cellular lactose. What was labeled lactose in

Figure 1.1 has been more specifically relabeled as cellular lactose here. The new net-

work includes LacY, another product of the lacZYA operon. LacY is a transmembrane

protein that uses ion flux to move lactose into the cell. In the absence of extracellular

lactose, there are very low levels of LacY and LacZ, since LacI almost fully represses

lacZYA. When extracellular lactose is present, it will interact with the small amount

of endogenous LacY, resulting in a small amount of cellular lactose, which results in a

small amount of allolactose, releasing LacI and permitting the lac operon to be tran-

scribed.
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Figure 1.2: Extended lac operon network. This network shows the same core as in
Figure 1.1 but with more of the regulators. In addition, different contexts are modeled,
namely an intracellular context above “Cell Wall” and an extracellular context below.

The eukaryotic signal transduction repertoire includes ion-flux transporters

such as in the E. coli lac network but alse many more kinase-based systems. These

are referred to as mitogen-activated protein (MAP) kinases, since they are activated

as the result of external small molecules. Though there are many families of signal

transduction, here I will only discuss two as representatives: the G-protein couple

receptor (GPCR) family and the receptor tyrosine kinase (RTKs).

GPCR-based signal transduction is responsible for a large class of the studied

cellular responses in humans, including processes as broad as vision, neurotransmission,

and histidine response. GPCRs are a class of proteins that integrate into the plasma

membrane via seven-transmembrane alpha helices. The portion of the GPCR on the

exterior of the membrane binds to specific ligand or a specific class of ligands. When

the ligand is bound, the conformation of the GPCR on the inner side of the membrane

changes. On the inner side of the membrane, GPCRs are coupled to G proteins, which

9



are named for their guanosine-binding properties. G proteins are localized on the

cellular membrane, next to a GPCR. Upon conformational change of the GPCR, the

G protein exchanges bound guanosine diphosphate (GDP) for guanosine triphosphate

(GTP), and is no longer localized to the cell membrane. This G protein is now activated

to continue a MAP kinase response elsewhere in the cell.

Similar to GPCRs, RTKs are located in the cellular membrane and contain

a ligand-binding receptor domain on the exterior of the membrane. Upon binding a

ligand in the receptor domain, the RTK is activated to phosphorylate a tyrosine target

on a phosphotyrosine binding (PTB) domain on another protein.

1.4 Transitivity and scope in biological networks

An important aspect of biological networks for my proposal is that they can

consistently and accurately be viewed at multiple scope and scales. By scope, I mean

the portion of the network that is under examination or investigation. In Figure 1.2,

the network shows some indication of how the lac network connects to other parts of

the entire cellular network. The protein CRP is another transcriptional regulator that

effects not just the lac operon, but almost 200 other transcriptional units in E. coli

according to the database EcoCyc [71]. Also shown are the primary products of LacZ,

glucose and galactose. Using data from EcoCyc, we could connect glucose to four

other biochemical pathways in E. coli as a substrate.

In principle, the entire cell and all its functions could be modeled with such

10



LacI LacZ

lactose

small molecule

protein
Inhibition

Activation

Figure 1.3: A reduced scope lac network.

a network of a very large size. Despite the size and interconnectedness of the cellular

network, we are able to narrow the scope of investigation to a small number of genes.

In addition to narrowing our investigation to a small number of entities, we can

also narrow scope to just a few types of entities and retain a consistent and informative

view of the biological process. Figure 1.3 shows a network of just two proteins and the

external lactose input. If we were only able to measure these two proteins, and control

the external availability of lactose, this would still be an accurate description of the

network. In this reduced network, the link from LacI to LacZ is the the result of the

transitive closure of LacIalacZYA→LacZ from Figure 1.1 and Figure 1.2.

This consistency under reduction of scope is essential to our ability to inves-

tigate and discover biological networks. We currently have no physical techniques for

the simultaneous measurement of all entities in a cellular network, and the size of such

measurements would outstrip our mathematical and computational tools for inference.

However, we are able to explore small pieces of the network, and even without knowing

the full context of the scope, we are able to accurately infer interactions.

When reducing scope in this way, our activation and inhibition links may no

11



longer correspond to direct physical interaction or immediate causes. Figure 1.3 shows

direct links from lactose node to the protein nodes. However, there is a distinction

between the model and the known biology: we know that the physical interactions are

mediated by allolactose in the case of the link from the lactose node to LacI. The

chain of physical interactions is longer for the link from node lactose to LacZ. The

entities allolactose, LacI, and lacZYA are all involved in describing the activation link

from node lactose to node LacZ. These links are therefore also the result of transitive

physical links.

Even the extended network in Figure 1.2 omits much of our knowledge of

the network. For example, we know more of the structure of the promoter of lacZYA,

and we ignore such essential components such as the transcription and translational

machinery.

This consistency under change of scope is particularly essential to the methods

in this dissertation. My methods focus on determining these networks not by measur-

ing any of the entities directly, but only by looking for downstream changes in gene

expression. In addition, I am only placing a single node for a gene in the network,

mixing the mRNA and protein species of a gene while ignoring small molecules. Un-

der these conditions, I expect to predict networks that are consistent with the true

biological network, but amenable to further study in two ways. First, there may be

additional intervening proteins on the links that I predict. Second, by adding more

types of entities using other investigation techniques, my predictions could be filled

with more direct physical causes.
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1.5 Traditional biomolecular methods for network discov-

ery

Recall the lac operon network from Figure 1.2. This network describes the

activation of the E. coli lactase enzyme, LacZ, in the presence of lactose. The protein

LacI serves as a general inhibitor of LacZ and the operon lacZYA, preventing the

expression of both the lactase and the transporter which moves lactose across the cell

wall. However, if there is a small amount of LacZ and a small amount of cellular lactose,

then LacZ will produce some amount of allolactose, which inhibits LacI, freeing up the

promoter of lacZYA and activating the metabolic pathway in response to an external

signal.

All of this was discovered in piecemeal fashion through the use of structural

perturbations to the cellular network. This network was the culmination of over a

decade’s worth of work, and resulted in the discovery of the nature of cis- and trans-

gene regulatory elements. Inferences in all steps of the network were aided by pertur-

bations: analogs of the small molecules allolactose and lactose were used to perturb the

corresponding nodes in the network and mutants were discovered that perturbed the

function of the proteins LacI, LacZ, and LacY. Critically, an E. coli strain was used

which had a functioning LacI protein, but a mutation in the binding site of LacI near

the promoter of lacZYA, establishing the existence of cis-regulatory elements.

The framework I propose for biological network discovery follows much the

same path. To begin network inference, we propose a set of models based on a limited
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amount of perturbation data. From this set of models, we determine which further

effects are most likely to disambiguate our existing models and expand upon the search.

The search procedure can then iterate until the network is completely elaborated or

the limits of gene-expression in the network prevent further research.
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Chapter 2

Measuring Biological Networks

The discovery of the lac operon network was the culmination of many studies

using a wide array of techniques to measure and perturb biological entities. Today,

the biological techniques for network inference follow the same lines. The particular

techniques for measurement and perturbation have become easier; perturbation is more

directed and easier, and measurement covers mary more entities at once and more types

of biological entities. However, the general principles are the same in that network

discovery relies both on the directed perturbation of a system and measurements of

responses to perturbation.

This chapter discusses the biological methods that are useful for investigat-

ing networks and that are relevant to my methods. I will first discuss the methods

for perturbing elements in a biological network. I will then discuss the measurement

technique that my method uses. Finally, I will discuss high-throughput methods for

detecting the presence of direct links in the biological network, which I can use either
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for verifying predictions or as prior knowledge when predicting networks.

2.1 Perturbation Methods

Perturbation is an extremely powerful tool for establishing causal relation-

ships, as discussed in §3.4. The essence of the increased causal power of perturbation is

that perturbation disconnects the perturbed element from its other causes, and there-

fore causes a structural change in the network. There exist several techniques for direct-

ing perturbation of biological systems. These fall into two classes: genetic perturbation

and impulse perturbation. With genetic perturbation, measurements can only be taken

at least one cell cycle after the perturbation has occurred, allowing responses to fully

propagate throughout the cellular network. Impulse perturbation allows measurements

to be taken within the same cell cycle, when not all responses to perturbation have yet

traveled through the cellular network. Both techniques are used in the datasets I will

analyze in my aims.

2.1.1 Genetic perturbation

Genetic perturbation usually involves reducing the functionality of a gene.

This can be done either by gene deletion in which case there is complete loss of gene

function, or by merely reducing the activity, resulting in a hypomorph.

Gene deletions are of such utility that the Saccharomyces Genome Deletions

Consortium has deleted over 90% of S. cerevisiae open reading frames [124, 47]. These

deletions proceed in several steps [9]. First, a DNA construct is created to replace the
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target gene. This construct contains a selectable gene, so that cells with successful

replacements can be differentiated from those that have not been successfully replaced.

The other ends of the construct are homologous to the 5’ and 3’ end of the target gene,

allowing for recombination once the construct is inserted into cells. These constructs

are inserted into a yeast culture using a lithium acetate treatment [48], which is called

transformation in microbes. Importantly for the method and results in Chapter 5,

techniques have also been developed for V. cholerae that allow gene deletion [39, 80].

Since such deletions last for the entire lineage of the cell, the effects on the

rest of the cellular network are very broad. There has been some concern that using

observations from broad changes will make confound network inference. However,

recent experiments with synthetic data [108] give preliminary indications that long

term perturbations like these might in fact allow better predictions.

2.1.2 Impulse perturbation

Impulse perturbation, unlike genetic perturbation, allows for the evaluation

of the change in a network over time. The cellular network will respond to such per-

turbations dynamically, and depending on when measurements are taken after the

perturbation, different effects will be observed. Though I do not use such temporal

effects in my proposed methods, it is important to note the effect as it can have con-

sequences for the interpretation of observations of the network and is a concern when

using data of this sort.

In the E. coli lac network we saw an example of lactose, an external signal,
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providing a perturbation in the network, and more general systems have since been

developed. There are several techniques for affecting specific genes in the cell at a con-

trollable time: genetic mutations to produce temperature-sensitive versions of protein

products, promoters to genes that respond to a drug treatment, and the RNAi system

for degradation of mRNA.

Signal transduction, as discussed in §1.3, induces changes in the state of the

network in the cell. These external stimuli activate, or deactivate, different parts of

the cellular network. These perturbations are extremely useful for discovering which

biological entities are related to each other, by identifying a connected component of

the cellular network. However, these perturbations are not structural, in that they do

not disconnect any elements from their causes, since by definition external variables do

not have any causes within the cell.1

An example of impulse perturbation of internal elements of the network is the

tetracycline-regulatable promoter in S. cerevisiae [41]. In this system, a gene is placed

behind a special promoter such that whenever the cell culture is exposed to tetracycline

the gene is effectively transcriptionally silent. When tetracycline is not present, the

promoter is promiscuous and transcription of the gene may be increased 1000-fold.

Here, it is clear how perturbation removes other causes: the promoter is changed such

that the normal inputs into the gene are entirely missing. The normal gene regulatory

program has been replaced with one that is easy to manipulate externally.
1Note that so far we have only discussed cellular networks, and not discussed the interaction of a

cell with its environment. In some situations, such as quorum sensing signals in V. cholerae growth,
the cellular network affects the extracellular environment and other cellular networks.
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Microbial organisms have long had systems for genetic transformation, but a

quick and inexpensive system for general perturbation of metazoans has only recently

been discovered. First reported in C. elegans, cytoplasmic double-stranded RNA in-

duces a pathway that digests messenger RNAs complementary to the double-stranded

RNA. This response is called RNAi, and it has quickly gained popularity as a method

performing gene knockdowns in many eukaryotic systems. Since its initial discovery, it

has been found that regulation via microRNAs shares many of the same components

as the RNAi pathways [73]. The two primary entities involved in the process are called

Dicer and RISC [59]. If the double-stranded RNA is long, then the Dicer enzyme cuts

the dsRNA into 21-25 nucleotide double-stranded fragments.

Any such small 21-25 nt dsRNA, referred to as small interfering RNA (siRNA),

is incorporated into the RNA-induced silencing complex (RISC). The siRNA strands are

unwound to single strands, and the RISC complex is remodeled in an ATP-dependent

process, which results in an activated RISC capable of recognizing and degrading com-

plementary RNA. This process also works with synthetic siRNA, so by inserting the

siRNA into the cell, nearly any transcript can be targeted with specificity.

2.2 High-throughput gene expression measurement

In recent years, gene expression profiling has emerged as a powerful tool for

quickly and easily assaying thousands of phenotypes in a cell. These phenotypes are

particularly valuable, as they elementally correspond to a particular gene sequence,
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and also correlate well with a protein. Therefore, a gene-expression phenotype can be

targeted directly by the methods above, and the semantics of the expression phenotype

correlate with the activity of the protein that is encoded by the gene. Gene expression

profiling also provides a wider scope on the cellular network than any other single

technique available, in that they capture an essential stage for a very large proportion

of the entire cellular network. Whole-genome gene expression microarrays also offer

a relatively unbiased way to search for activity, and next-generation RNA sequencing

methods promise the ability to assess RNA quantities even for sequences that are

unknown a priori.

First used to report on 45 gene expression profiles in Arabidopsis thaliana [103],

DNA microarrays are somewhat analogous to a large-scale Southern or Northern blot.

Gene expression microarrays aim to quantify the amounts of many different types of

RNA species in a cell. This is done by using the tendency of complementary nucleotide

sequences to base-pair, or hybridize. An individual run of a microarray is often called

a hybridization.

For each RNA assayed by the microarray, there are one or more single stranded

DNA probes of length 25-1000 nt which complement that RNA. Most probes are de-

signed to match only one sequence of RNA or a single gene. When a probe complements

more than one sequence (perhaps with a few mismatches), that probe will suffer from

cross-hybridization, which complicates the interpretation of that probe’s signal. Addi-

tional probe issues originate from variation in melting temperature, density of probe

DNA, and homogeneity of the probes. Various wet-lab and mathematical techniques
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have been developed to normalize different probes to each other to allow comparison

of responses between probes.

There are many methods for manufacturing microarrays, but the types can

be grouped into two broad categories: cDNA and oligo arrays. In cDNA arrays the

probes are made from reverse-transcribing full length mRNAs, and can be of varying

length and quality. Second, Oligo arrays use short, synthetic DNA probes, with uniform

lengths between 25-70 nt. Though they are a consistent size, oligo probes can vary in

their binding affinity due to differences in GC-content or because of secondary structure

effects.

2.3 High-throughput network structural measurement

At the most detailed scope of the cellular network, links are defined by phys-

ical interactions. Ultimately we hope to find explanations of biological processes that

identify all the components, and specifically notice how they interact. Lab techniques

used for detecting protein-protein and protein-DNA interactions are now being scaled

to the degree that thousands or tens of thousands of such assays can be performed in a

single study. This permits investigation of the structure of the cellular network without

bias towards previously investigated genes, and provides a dataset which is useful to

investigations that later use any of the assayed genes.
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2.3.1 Protein-Protein Interaction

The network of protein-protein interactions determines much of the skeleton

of allowed protein-kinase pathways. Nearly all known cellular processes, from tran-

scription and translation to signal transduction, depend on the binding of proteins to

each other in a highly specific manner. These protein-protein interactions can refer

to transient binding, more lasting binding in a complex, and the “self” binding of

homo-multimers.

Ascertaining protein-protein interactions is complicated by the context speci-

ficity of protein interaction. Many protein-protein interactions only make sense in a

specific context. For example, many mitogen-activated protein kinase signaling path-

ways are highly localized, and this localization is essential the signal specificity [20].

Some protein-protein interactions must be mediated by chaperons. The PDZ family

of domains [58], present in both prokaryotes and eukaryotes, including approximately

350 human proteins [76], bind specific peptide sequences to assist in the assembly of

complexes and general protein targeting. Presently both in vitro and in vivo meth-

ods suffer this specificity problem. Using a localization database in conjunction with

protein-protein interaction can help resolve this context specificity.

The two-hybrid system is a technique for reporting when two proteins bind

well enough to activate a transcript. It requires fusing a domain to each queried

protein. The TAP-Mass spectrometry system requires fusing a sequence to each queried

protein. Most high-throughput studies have been performed in yeast, which has well-
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established and favorable genetic systems and culturing conditions for performing large-

scale experiments.

2.3.1.1 Two-hybrid systems

Initially reported in 1989 by Fields and Song [30] in S. cerevisiae, the two-

hybrid system is inspired by the activity of the GAL4 gene. GAL4 contains two do-

mains, one of which binds upstream of its genomic location, and own which activates

transcription of itself. Both domains are required: if the activation domain is not lo-

calized to the promoter the activator will not work and if the binding domain is not

attached to the activating domain, GAL4 is not activated. To test if two proteins X

and Y interact, two hybrid proteins are created. The first hybrid protein is the fusion

of the binding domain of GAL4 and X, the second hybrid protein is the fusion of Y and

the GAL4 activating domain. These hybrids are introduced into strains without GAL4

and with a β-galactosidase reporter gene downstream of the sequence bound by GAL4.

Significant amounts of β-galactosidase activity then indicate binding of proteins X and

Y.

By 1994, the two-hybrid system was in widespread use [31], using a variety

of reporter, binding, and activating constructs. The system has also been expanded

to DNA-protein, RNA-protein, and protein-small molecule interaction [120]. The first

genome-wide study of protein linkage was conducted in 1996 in E. coli bacteriophage

T7 [7].

Two independent, large-scale investigations in S. cerevisiae used the two-

23



hybrid system to determine interactions. Both studies created libraries of strains for

both binding and activating hybrids, and then crossed all strains to create an array of

double-hybrids. Uetz et al. [117] compared two different methods of detecting positives

in a 192 by 6000 (binding and activating hybrids, respectively) screen, one with higher

accuracy and one with greater throughput. Ito et al. [63] completed a thorough scan

(3,278 proteins in interactions) subsequently, with somewhat non-overlapping results.

Due to the necessary gene fusion steps, two-hybrid systems inherently have

high false negative rates [65]. The fused binding or activating domain has the potential

of obstructing both normal protein folding and the interacting sites of the proteins.

The Uetz et al. higher accuracy screen found an interaction for a binding hybrid only

45% of the time.

2.3.1.2 TAP-Mass spectrometry

Increasingly precise mass spectrometric methods now allow the identification

of proteins and protein complexes from cell extracts. A single species, isolated e.g. by

gel electrophoresis or centrifugation, may be digested by trypsin, resulting in small frag-

ments whose amino acid constituents can be identified via mass spectroscopy. Search-

ing against a database of potential peptide sequences can quite often identify unique

proteins that match the observed weights.

In order to improve isolation of single species of compounds, studies often use

a single “bait” protein, which has been modified with an easily immunoprecipitated

tag [18]. The FLAG tag is particularly popular due its ability to precipitate without
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denaturing complexes [28]. Interactions found this way may not necessarily be direct

since a whole compound may be pulled down and not all members may share full

contact.

Again in S. cerevisiae, two genome wide screens have been performed to find

binding ability [52, 45]. Rates of positive interactions were much higher than in the

yeast two-hybrid experiments, with 78%–82% of the baits finding partners, compared

to a best case of 45% for yeast two-hybrid. Positives were also much more repeatable

than in the two-hybrid studies, approximately 75% vs. 20%.

2.3.1.3 Databases

There are several databases of protein-protein interaction with both literature-

curated interactions, high-throughput interactions, and computationally predicted stud-

ies. Mathivanan et al. [86] compare the human-specific parts of seven such databases

(BIND, DIP, IntAct, Mint, MIPS, PDZBase, and Reactome) to their own database of

protein-protein interactions [97]. Several of these databases include additional infor-

mation beyond protein-protein interaction.

2.3.2 Protein-DNA Interaction

Chromatin immunoprecipitation paired with DNA microarray analysis (ChIP-

chip)[53] or DNA sequencing (ChIP-seq)[61] promises to give high-throughput results

of protein-DNA interaction. Previous wet-lab methods for determining protein-DNA

interaction included DNase footprinting, primer extension, and gel shift assays, and
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were generally limited to a very small number of queries. Alternatively, a protein’s

binding site could characterized computationally (often by a weight matrix), and then

genomic binding sites could be predicted, usually with a high false positive rate.

ChIP-chip and ChIP-seq experiments first cross link transcription factors to

bound DNA with formaldehyde in vivo. DNA-protein complexes are extracted and cut

randomly via sonication or other method. The protein, and any cross-linked DNA, is

selected via immunoprecipitation of the target factors or epitope tags. Finally, the DNA

is amplified via PCR, and the sequences that were bound are queried with either mi-

croarrays or with DNA sequencing. Both methods produce similar results among their

top-ranking predictions [29], but require appropriate controls for identifying entirely

novel binding motifs [66].

Large-scale ChIP-chip studies have been published in human [137] and S. cere-

visiae [75]. In C. elegans, protein-DNA interactions have been investigated using a

yeast one-hybrid system [26].
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Chapter 3

Probabilistic and Other Graphical

Models

Computational tools for dealing with networks of variables under probabilis-

tic constraints have been developed and widely used in statistical physics, machine

learning, computer vision, coding theory, and bioinformatics. These computational

tools are now being applied in biological networks, both for modeling and discovery.

This chapter contains the relevant computational background for my work in Part II.

I discuss previously and commonly used computational graphical models, algorithms

for inferring values from a given model, algorithms for learning a model from data, and

the implications of causality and perturbation in these models.
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3.1 Graph formulations

Traditionally, probabilistic graphical models are presented in two categories:

undirected and directed models. In both of these types of models, each node of the

graph is a random variable. The edges in both types of models encode the probabilistic

dependencies between random variables, though both models encode the dependencies

in different ways. Decoding the probabilistic dependencies requires examination of the

local structure around a variable.

These two categories, also known by the names Markov random fields and

Bayesian networks, are capable of representing different probability spaces, but share

some overlap. Sometimes, a third type of graphical modeling containing both directed

and undirected edges is presented to generalize the two and unify the set of repre-

sentable probability spaces. However, a different formulation of this generalization,

called factor graphs, has seen growing popularity. I find the factor graph representa-

tion far preferable to the mixed directed/undirected model formulation, and in many

cases preferable to both Markov random fields and Bayesian networks due to the ex-

plicit representation of the characteristic function of the network.

Before proceeding with the definitions, I will define some notation conventions.

First, capital letters such as A or X refer to variables over a domain. In general, the

domain of a variable can be any set, countable or uncountable, but in my proposal I

use only finite sets or the real numbers, <.

A factor is a function whose domain is a set of variables and whose range
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is the real numbers. Many functions can be interpreted as factors, so their notation

varies. For example, Pr (A,B), fAB, or Pr (A|B) could all be considered factors in

the rest of this proposal. Factors are sometimes referred to as potentials. Both joint

and conditional probability distributions are quintessential examples of factors, though

factors need not be restricted in the ways that probability distributions are defined.

For example, the identity F = MA over three variables with a real-valued domain

could be defined as a factor N with f , m, and a all real numbers:

N(f,m, a) =


0 if f = ma

−∞ otherwise

As is often done with probability distributions, I will use abbreviated notation

for factors where an argument in parentheses to a factor, such as X and Y in f(X,Y ),

is a set and a component of the domain of the factor. The total domain of this factor

is the cross product of all the sets that were used as arguments to the factor. Thus

the expression f(X,Y ) simultaneously names a factor and defines the domain of the

factor.

There are two primary factor operations that are used in graphical mod-

els: factor product and factor marginalization. The product of two factors f(X) and

g(X,Y ), denoted f(X)g(X,Y ) or fg, is another factor. The resulting factor’s domain

is the cross product of the union of the domains of each operand, X×Y in this example.

The value for each element in the result is the value of operand evaluated at that point,

i.e. in this example (x, y) 7→ f(x)g(x, y) for all x ∈ X and y ∈ Y . The other operation
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used on factors is marginalization, sometimes called summarization. Marginalization

results in a factor with one less variable in the domain. There are two variants of

marginalization which are commonly used; one variant uses addition and the other the

max function. If X in the above examples is discrete, then marginalization of X out

of g is denoted and defined as:

∑
X

g(X,Y ) ≡ y 7→
∑
x∈X

g(x, y) for all y ∈ Y

If X is a continuous variable, then

∫
X
g(X,Y ) ≡ y 7→

∫
x∈X

g(x, y) for all y ∈ Y

It is possible to marginalize a factor down to zero variables, in which case

the result is a factor with no variables and a single real number in the range. This

full marginalization has sensible interpretations in some contexts: marginalizing prob-

abilistic factors by addition results in a probability mass, marginalization by max of

probabilistic factors results in the most probable assignment, and marginalization of

an arbitrary factor results in the partition function.

3.1.1 Markov random fields

Markov random fields were originally developed in statistical physics to de-

scribe systems of small particles, where the state of one particle interacts with the state

of nearby particles. Such interactions are represented by lines between variables. A
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A

B D

C

Figure 3.1: Example Markov network.

Markov network describes a probability distribution over its variables. For every max-

imal clique C in the graph, a factor φC describes the interactions of those variables.

If the set of all such factors is denoted Φ, then the probability distribution over all

variables X̄ is defined to be:

Pr
(
X̄
)
≡ 1
Z

∏
φc∈Φ

φc (3.1)

For the example in Fig. 3.1, Pr (A,B,C,D) = 1
ZφABC(A,B,C)φACD(A,C,D).

The constant Z is known as the partition function. It serves to normalize the function

to a proper probability function and can be calculated by Z =
∑

x̄

∏
φc∈Φ φc. Though

the expression is simple, such a calculation is not usually trivial, and is in effect similar

to calculating the probability of the data in a Bayesian statistics model. Note that there

is flexibility in this parameterization, and that many different pairs of φABC or φACD

will result in identical probability distributions with the same normalizing constant Z.

This is because information about the joint dependence between A and C, Pr (A,C)

can be “shifted” between φABC and φACD. For any factorization φABC = φ′ABCφ
′
AC ,

where φ′AC does not have zero elements, let φ′ACD = φACD/φ
′
AC where factor division
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is defined similarly to factor multiplication. Then Φ = {φABC , φACD} results in the

same probability distribution and normalization constant as Φ′ = {φ′ABC , φ′ACD}.

3.1.2 Bayesian networks

Bayesian networks are a representation of a probability distribution based on

the conditional probabilities. Conditional probabilities offer the advantage of often be-

ing able to characterize a known real-world system, and in conjunction with a Bayesian

network the meaning of each conditional probability has a fairly clear interpretation.

This is an advantage over clique potentials in Markov random fields, which may have

an unclear meaning. However, specifying a Bayesian network from a probability distri-

bution is done through the conditional independences, which can be difficult to assess.

In a Bayesian network, there is a conditional probability distribution for each

node. The directed graph structure is determined by these conditional probability

tables: there is an arrow into each node from every variable on which it is conditioned.

Additionally, this directed graph must be acyclic. Let X̄ be the set of variables in the

network, and Parents (X) for X ∈ X̄ be the set of variables on which X is conditioned.

Pr
(
X̄
)

=
∏
X∈X̄

Pr (X|Parents (X)) (3.2)

There is great flexibility in the parameterization here, as in the Markov Ran-

dom Field case, since any probability distribution can be expanded into conditional

probabilities in any order. There are many cases where the probability distribution

can be conditioned in a different order, but still encode precisely the same conditional
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independences, resulting in a network with flipped arrows but the same probability

distribution as the original Bayesian network. For this reason Bayesian networks can

be slightly deceptive, as the directionality is sometimes assumed to encode causality,

but this may not be the case.

Many graph-based bioinformatics problems are easily formulated as Bayesian

Networks of a certain form. Algorithms on phylogenetic trees, for example, are special

cases of the algorithms used on Bayesian networks. Hidden Markov models can be

represented as a chain with one variable for each hidden state and one variable for each

observed symbol.

3.1.3 Factor graphs

Both Markov random fields and Bayesian networks are mathematically spec-

ified by an objective function, namely their probability distribution. Factor graphs

are a representation of any such objective function over a set of variables, and thus

generalize both Markov random fields and Bayesian networks in that sense.

Figure 3.2 shows the factor graph representations of both a Markov random

field and a Bayesian network. Factor graphs represent both the variables as nodes and

the factors as nodes, with edges from each factor to the variables in that factor’s domain,

resulting in a bipartite graph. A factor graph is then a very general representation of

constraints on variables, and has even been used to represent problems such as n-

SAT [89] and fast Fourier transforms [1, 2].
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A B

D C

A B

D C

fAB

fCD

fBCfAD

(a)

W

YX

Z

W

YX

Z

P (W )
P (X|W )

P (Y |W )

P (Z|X, Y )

(b)

Figure 3.2: A Markov random field and a Bayesian network next to their cor-
responding factor graphs. (a) A Markov random field (left) and the correspond-
ing factor graph representation (right). The decomposition of the joint probability,
Pr (A,B,C,D) = 1

Z fABfBCfCDfAD, corresponds directly to the factors in the fac-
tor graph. (b) A Bayesian network (left) and the corresponding factor graph (right).
As with the Markov random field in (a), the decomposition of the joint probability,
Pr (W,X, Y, Z) = Pr (Z|X,Y ) Pr (X|W ) Pr (Y |W ) Pr (W ) is made explicit in the fac-
tor graph. Though the Markov random field and the Bayesian network share the same
edges when directionality is discarded, their probabilistic formulations are quite differ-
ent. The factor graph representation of each structure makes this difference explicit
visually.
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3.2 Inference methods

Inference in graphical models aims to find out something about the distribu-

tion of variables. For example, common goals are to calculate the maximally likely

assignment of values to each variable or the distribution of some set of variables given

observations of the value of some disjoint set of variables. In a probabilistic setting,

any conditional query reduces to two probability functions:

Pr
(
X̄|Ȳ

)
=

Pr
(
X̄, Ȳ

)
Pr
(
Ȳ
) (3.3)

Such computations are in general bounded by the size of the largest domain

during execution, since the size of a discrete domain factor grows exponentially with

the number of variables in the domain. Therefore the main aim of inference algorithms

is to minimize the largest such factor that is created during the calculation of the final

answer.

Inference algorithms for Markov random fields, Bayesian networks, and factor

graphs are common to all representations [74]. In general exact inference on a graphical

model is an NP-hard problem. However, inference can be performed in linear time if

the factor graph representation of a graphical model has no cycles, and has inspired

the highly successful method of approximation via message passing on graphical models

with cycles. I have used both exact inference and approximation via message passing

in this thesis.
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D
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fAB

fAD
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D

C
f ′

BCD
fAC

Figure 3.3: Variable elimination step for A. The new factor f ′BCD is equal to∑
A fACfADfAB.

3.2.1 Exact Inference

There are two basic methods for exact inference in graphical models: variable

elimination and message passing on acyclic structures. Both of these algorithms take as

input an ordering over all the variable nodes in the graph, and the largest factor used

in algorithm depends on both the ordering and the structure of the graphical model.

The general solution to finding the most efficient such ordering is NP-hard, but there

are certain cases where an ordering is known to be optimally efficient. For example, in

factor graph trees, any order that respects the connectivity of the tree is optimal.

Variable elimination transforms the factor graph, removing one variable per

step, until only the variables of interest are left. The elimination of a variable node

removes that variable node and all adjacent factor nodes, replacing them with a factor

node. If the neighbors of variable X are the set of factors F , then the factor f ′ that

results from eliminating X is
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f ′ =
∑
X

∏
f∈F

f (3.4)

Figure 3.3 shows the graph transformation under elimination of A. The mem-

ory and time costs of a variable elimination step depend on the maximum size of

product in Equation 3.4. Heuristic variable elimination algorithms try to choose an

ordering of variable elimination that results in the smallest such product.

In the special case of a tree-shaped factor graph, it can be shown that the most

efficient ordering always takes a variable node with the fewest number of neighbors.

Using transformations of the graph, namely by combining two variables into a single

variable with a larger domain, any cycle in the graph can be eliminated, resulting in a

tree structure. Such a structure is called a junction tree.

Variable elimination on a junction tree collapses in a predictable manner,

and does not create a factor larger than the largest node in the junction tree. This

predictable collapse of the junction tree suggests an algorithm where messages are

passed between all nodes, each message a factor itself which represents the current local

belief in the setting of a variable or a set of variable. If, during variable elimination

no nodes are removed from the graph, but instead the newly created factors are stored

as “messages”, the results can be remembered and reused such that all variables are

solved for in turn. I will discuss this algorithm in greater detail in the next section,

where the message passing occurs on a cyclic structure, and the algorithm generates

an approximate inference of variable posteriors.
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3.2.2 Approximation with message passing

The message passing algorithm, also known as belief propagation or affinity

propagation, has been invented many times, at least twice in the coding community

with low-density parity check codes [40] and turbo codes [11], and once in Bayesian net-

work community [96]. It has gained great popularity, as the message passing has been

found to approximate exact results with very little computation in difficult problems.

Approximate message passing has seen a surge of recent interest, with the creation of

generalized message passing algorithms [133, 132] and surprisingly successful applica-

tions on problems such as clustering [35].

There are two types of messages passed in the algorithm. Variable nodes pass

messages to neighboring factors, where each message is a valuation over the possible

states of the variable. Similarly, factor nodes pass a message to each neighbor variable

node v summarizing that factor’s “belief” that v is in each possible state. Every message

is a valuation over the settings of a single variable, a normalized or unnormalized

probability distribution, and is itself a factor. Let mn1→n2 denote the message from

node n1 to node n2, and Neighbors (n) the set of all nodes adjacent to n. Then the

message sent from a variable node v to a factor node f , where f ∈ Neighbors (v) is

simply:

mv→f =
∏

f ′∈Neighbors(v)\{f}

mf ′→v (3.5)

All the incoming messages are factors over just the variable v, so therefore all
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the outgoing messages have the same domain. The message from a factor node f to a

variable node v is calculated by:

mf→v =
∑

Neighbors(f)\v

f ·
∏

v′∈Neighbors(f)\v

mv′→f (3.6)

Note that the product of the factor and the incoming messages is marginalized

by every variable except for v, and there the message is a factor over just the domain

of v. In this scheme messages are passed iteratively. At any given moment, the belief

in a variable X is approximated by multiplying all the incoming messages.

Scheduling of message passing is an area of active research, with few general

results. In the case of a tree factor graph, waiting until all incoming messages are

ready, and passing each message at most once results in the exact result. When there

are cycles in the graph, passing messages according to a schedule that causes data to

be counted more than once can lead to poor approximations.

Generally, message passing is performed until the messages “converge,” usu-

ally detected by measuring successive changes in the messages. Some difficulties can

be encountered when there are long-range correlations, meaning when the value of one

variable is highly correlated to the value of a variable a large number of nodes away.

Additionally, it is known that message passing can be prevented from detecting con-

vergence when there is a multi-modal cycle to the pattern of the messages. Message

damping by averaging successive messages can help prevent such oscillations.
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3.3 Structure learning

Though an important aspect of graphical models, there are few general meth-

ods for structure learning as it is a hard problem. One challenge is computational,

in that number of possible structures is super-exponential in the number of variables.

Further, identification of conditional independence between variables can require very

large amounts of data, and statistical power to detect dependence and independence

depends on the particular probability distribution being estimated. Therefore, most

structure learning is highly dependent upon the nature of the data and problem space.

Typical applications in biology for modeling gene expression have used between five

hundred and thousands of joint samples of variables in the network. In the next chapter,

Chapter 4, I describe some previous methods for structure search for finding biological

networks.

3.4 Causality in graphical models

The arrows in Bayesian networks are highly suggestive of causal influences,

particularly when combined with the common introductory Bayesian network examples.

However, a Bayesian network need not represent any causal structure at all, and for

any Bayesian network which coincidentally does represent a causal structure, there

are many other Bayesian networks which represent the exact same probability space

but have entirely different structures. Therefore, Bayesian networks are not causal

networks, and learning a Bayesian network on a dataset will not learn causality on that
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dataset.

The notion of causality has often been avoided by statisticians, as there are

many philosophical pitfalls to avoid in addition to a general lack of theory. However,

recent years have seen some theoretical work on rigorously defining causality in proba-

bilistic and modeling terms. In particular, a framework of causality has been developed

with directed and undirected graphical models [95].

As it concerns this dissertation, causation provides a framework for predicting

effects under the perturbation, or intervention, of a variable. In particular, perturbing

a variable disconnects that variable from its causes, while leaving the effects of that

variable intact. Thus, a full causal model predicts not only a standard distribution over

the variables, but also predicts the distribution of the variables under all perturbations.

The methods in this dissertation use causal models in this form. These meth-

ods use graphical models that specify how biological elements interact together, but

also predict how they behave under perturbation. In this sense, these methods are

causal, and links in the network represent cause and effect. These causes may be from

direct physical interaction, or they may represent the transitive chain of several direct

physical interactions.
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Chapter 4

Network Prediction Methods

Computational construction of biological networks from high-throughput data

is an active area of research. Gene expression data, protein-protein interaction data,

and protein-DNA interaction data have all been used in various combinations to pre-

dict networks. In recent years, availability of gene-expression under knockdown has

increased the number of methods dealing with such data. In this chapter, I will first

review the methods used to infer the connectivity of the lac operon in E. coli. I will

then describe the methods used for modeling biological networks, followed by some

methods used to predict pathways from data de novo.

4.1 De novo methods and network refinement methods

Being able to accurately model a biological network is a necessary step towards

being able to learn them de novo. Gat-Viks et al. [44, 42, 43] sought to use interaction

and regulatory links found in literature to create a network. This network modeled
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protein interactions, gene regulation, mRNA quantities, and protein quantities. Ac-

curately modeling a network also requires being able to model any cycles that may

appear, so they used a factor graph formulation of the regulatory network. Combined

with expression data, they were able to identify regions where the regulatory network

was poorly characterized, and then refine it. Gat-Viks et al. used several S. cerevisiae

systems for biological verification, including the osmotic stress response network.

The growing abundance of protein-protein interaction and protein-DNA in-

teraction data, described in §2.3.1 and §2.3.2, is particularly amenable to refinement

due to uncertainty of the accuracy of these new methods. In addition, working on the

scaffolding of a protein-protein and protein-DNA net permit the exploration of direct

causal links in a network. Yeang et al. [130] sought to explain knockout gene expres-

sion data in conjunction with protein-protein and protein-DNA interactions. Their

inference algorithm assigned direction to protein-protein edges, and a sign (activation

or inhibition) to protein-protein and protein-DNA edges. Yeang et al., explained the

S. cerevisiae pheromone response network, among others.

4.2 Computational methods

Building upon their experience with Bayesian networks in other contexts,

Friedman et al. [37] were the first to build Bayesian networks from gene expression

data to explain a pathway. Their methods are somewhat different from the efforts

of their successors in that they built their networks entirely from observational gene-
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expression microarrays. Additionally, they were able to learn causal Bayesian networks

by searching over equivalency classes of partially directed acyclic graphs. Friedman et

al., were able to predict the S. cerevisiae cell cycle network over the Spellman [109] data

set, which consists of an unusually large number of microarrays over a time-course on

a synchronized culture. Observational studies with such large numbers of microarrays

are very rare, limiting the application of this technique.

4.2.1 Protein-protein based methods

Interpretation of high-throughput protein-protein interaction data is often

confounded by two factors: the inaccuracy of the assay, and false positives from pro-

teins that bind but are never expressed such that they can co-localize. Several separate

groups have been able to learn accurate networks from noisy protein-protein interac-

tion data by combining it with co-expression data, with increasingly computationally-

efficient methods [111, 106, 56]. This methods relies on searching the protein-protein

interaction network for regions with high co-expression. It has recently been extended

to include not only protein-protein interaction data, but also protein-DNA interaction

data and the results from knockdown experiments, allowing the inference of some causal

relationships [93].

4.2.2 Perturbed gene-expression methods

Markowetz et al. [83, 84] developed the Nested Effects Model (NEM) for

predicting networks in a common and practical experimental setup: gene expression
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profiling under perturbation of genes known to be involved in the phenotype of interest.

Their method starts with genes known to be related due to a common loss-of-function

phenotype when each gene is knocked down. Next, microarrays are used to profile

expression of the genome under each perturbation. Finally, they build a model based

on the nesting of effects under each knockdown.

Since NEM predictions are based on secondary effects, these models can pre-

dict networks over biological entities which are difficult to directly assay. For example,

Markowetz et al. predict a signaling network in D. melanogaster which involves no

change in gene expression among the signaling genes and is therefore invisible to cur-

rent high-throughput techniques.

I believe their data and model setup to be the most appropriate for the predic-

tion of signaling networks. I have therefore based my methods on the same fundamental

idea: learning networks among perturbed genes from downstream effects. In the fol-

lowing chapter, I present such a method based on Bayesian networks. In subsequent

chapters, I present extensions of the Nested Effects Model both in terms of the biolog-

ical model and an inference method, along with new results.
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Part II

Methods and Results
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Chapter 5

Joint Intervention Networks

If multiple genes contribute to the same phenotype, it is often the case that

these genes interact. With quantifiable phenotypes, measurements of the phenotype

under both single- and multiple-gene perturbations can be collected. When genes con-

tribute to the phenotype completely independently, we can construct an estimate of

the phenotype under the multiple-gene perturbation by using an arithmetic combi-

nation of the single-gene phenotypes, typically addition or multiplication. When the

multiple-gene phenotype does not match the value predicted from single-gene pertur-

bation phenotypes, then there is an epistatic interaction between the genes in the

double-gene perturbation.

The concept of epistasis has been in the genetics literature for a century [8],

and has allowed geneticists to predict interactions between genes without requiring

the ability to measure the activity of the genes themselves. Predicting an epistatic

interaction requires the ability to perturb genes and measure a downstream phenotype.
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This chapter presents an extension of epistasis analysis that allows the inference of

complex interaction between more than two genes from high-throughput data.

An overview of the experimental setup for an application of this methodology

is shown in Figure 5.2. Data is collected from competitive expression measurements

contrasting two different genetic strains. In §5.2 through §5.4 I show how to model

epistasis analysis on a complex regulatory network with a Bayesian network. In §5.5 I

describe how to search for a regulatory network that best describes the data. Finally,

in §5.6 and §5.7 I describe an application of JIN to a V. cholerae biofilm network.

5.1 Relationship to published work

The work in this chapter has been published previously in the proceedings

of the 2009 Pacific Symposium on Biocomputing [70]. The computational model was

developed jointly with Dr. Chen-Hsiang Yeang and Dr. Joshua Stuart. I developed and

conceived the computational model as a single Bayesian network under the advisorship

of by Dr. Stuart and me. I implemented the general Bayesian network library that

performs inference on a Bayesian network. Mrs. Pinal Kanabar and I jointly planned

the implementation of a conditional probability table (CPT) that follows the model in

§5.3, and Mrs. Kanabar coded it to our specification. Similarly, Mrs. Kanabar and I

jointly planned the implementation of network scoring and network search, and Mrs.

Kanabar coded the implementation. Mrs. Kanabar also ran the implementation on

the V. cholerae biofilm data provided by Dr. Fitnat Yildiz’s lab. Mrs. Kanabar and
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Figure 5.1: Switch regulatory epistasis. Three perturbations of a cellular network are
presented. Each cellular network consists of three nodes, A, B, and Y. Hidden gene
states are shown by nodes with solid borders, perturbed gene states are denote with
dashed, red borders, and observed gene states are shaded gray. Switch regulatory
epistasis analysis assumes that the observed phenotype, Y, is downstream of both of
the perturbed genes, A and B.

Dr. Yildiz analyzed the network and expansion for biological relevance.

5.2 Modeling epistasis with Bayesian Networks

The Joint Intervention Network automates switch regulatory epistasis analysis

with complex gene regulation. In general, the term epistasis refers to any interaction

between gene perturbations that is non-additive. Using definitions from Huang and

Sternberg (2006) [54], switch regulatory epistasis analysis assumes the measured effect

is downstream of the perturbed genes, whereas substrate dependent epistasis analysis

assumes the observed effect is on the path between the two perturbed genes. Switch

regulatory epistasis analysis is generally used in gene regulatory models, while substrate

dependent epistasis analysis is often used for metabolic pathways. Recently, Van Driess-

che et al. [118] used switch regulatory analysis to manually build a regulation pathway
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by comparing gene expression data under single and double knockouts.

Figure 5.1 illustrates the logic of epistasis analysis. Node Y represents an

observable phenotype downstream of the genes A and B. In the top network, A is

deleted; in the middle network, B is deleted; in the bottom network, both A and B are

deleted. Under the deletions of ∆B and ∆AB, observations of the phenotype Y will be

similar, since B has identical states in both molecular networks. However, under ∆A

Y may have a different value as B is less constrained.

This epistatic reasoning matches the results of a Bayesian network modeling

the same perturbations. In this Bayesian network representation, let genes A and

B be unobserved, hidden variables. Let the phenotype, Y, be an observed variable.

Interactions between genes are represented by conditional probability tables (CPTs).

Gene deletions in a strain are modeled as causal perturbations of the gene’s variables

in the Bayesian network, both setting the value of the perturbed gene and removing

the influence from parent genes. The phenotype observation distribution in Figure 5.1

shows hypothetical probability distributions for one possible setting of CPTs, where ∆B

and ∆AB perturbations have identical distributions for Pr (Y ), and the ∆A network

has a different distribution for Pr (Y ). By the conditional independence assumptions

of this network structure, the identity of phenotype distributions under ∆B and ∆AB

will hold for any possible CPTs in addition to those in the example. Only in degenerate

cases, i.e. deterministic CPTs, will ∆A have the same phenotype distribution as ∆B or

∆AB. Thus, Bayesian networks provide a natural generalization of epistatic reasoning.

The Joint Intervention Network is a method for evaluating competitive gene
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Figure 5.2: Overview of the experimental setup for a Joint Intervention Network ap-
plication. For one biological system, many perturbations are gathered (upper left).
Competitive expression hybridizations are performed for all combinations, resulting in
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possible regulatory networks among the perturbed genes. Network search finds which
regulatory model best fits the data, resulting in a single predicted regulatory network.
This network is then used to find other genes that may be under the same regulation
model, resulting in a new network with additional genes taken from the original data
matrix.
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expression data with epistatic reasoning on a complex regulatory model. Given a

regulatory model M , a data matrix D, and a genotype comparison matrix G, the

Joint Intervention Network JIN(M,D,G) is a Bayesian network for evaluating the

likelihood of competitive expression observations. Figure 5.2 shows an example data

matrix and genotype matrix along with many potential regulatory models from the

hypothesis space. The regulatory model M is a boolean Bayesian network over some

unobservable and perturbed genes, and a replicated phenotype variable labeled Y .

Except the phenotype node Y , every node in M is a regulatory node. A regulatory

node is a binary variable that describes the hidden activity state of the corresponding

regulatory gene. Interactions between genes are modeled with CPTs between nodes

in the Bayesian network. In the following section I describe the constraints on CPTs

used aid in biological relevance and interpretability. The m × n matrix D consists of

competitive observations between perturbed strains, and is a discretized log ratio of

two genotypes, where there are m comparisons and n different observations under each

comparison. The genotype matrix G, has dimension m × 2, and identifies the strains

used for the competitive observations in D. The ith row in D is the log-ratio gene

expression in genotype Gi1 over genotype Gi2.

The hidden activity state of every regulatory gene in every strain is modeled

in JIN(M,D,G). For a given genotype deletion strain ∆X, where X is some set of

regulatory nodes in M , let M(X) be a copy of the Bayesian network that has been

causally perturbed for each gene in the set X. Specifically, for each variable V in M ,

add a variable VX to the subnetwork M(X). Next, for each variable VX in M(X), if
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Figure 5.3: Structure of an example Joint Intervention Network. The regulatory model
on the left, M , is a Bayesian network. The genotype matrix, G and data matrix, D,
contain the conditions and competitive expression observations, respectively. Part of
the corresponding Joint Intervention Network, JIN(M,D,G), is shown on the right.
For each perturbation genotype, M is copied and then causally perturbed according
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perturbed for deletion of B. Below the genotype networks are observation nodes that
compare the phenotypes of various genotype networks. Boxes in Bayesian networks are
plate notation–each variable in a box is replicated the number of times shown in the
lower right.

V ∈ X then clamp V s state to 0. Otherwise, if V /∈ X, set the CPT of VX to be the

same as the CPT of V in M .

To construct JIN(M,D,G), we first create variables to model the hidden

states of gene activity in each genotype, and then connect them to observation nodes

that correspond to elements of D. For every unique genotype g that is in the genotype

matrix G, add M(g) to JIN(M,D,G). Next, for every row i in the data matrix D,

construct an observation node YGi1,Gi2 to model the competitive expression observation,
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and connect this node as the child of YGi1 and YGi2 . The competitive observation node

has a ternary domain of {−1, 0, 1}, while the parent nodes YGi1 and YGi2 are boolean

with domain {0, 1}. Construct a CPT for YGi1,Gi2 such that:

Pr (YGi1,Gi2 | YGi1 , YGi2) =


1 if YGi1,Gi2 = YGi1 − YGi2

0 otherwise

Finally, for every column 1 to n in the data matrix D, replicate every Y node and

associated CPTs. In Figure 5.3 these replicated variables are shown with plate notation.

5.3 Regulatory Model

In the Joint Intervention Network we assign regulatory roles to each interac-

tion in the model. We allow three types of interaction: repression, additive activation,

and multiplicative activation. Each edge in a regulatory model M is of one of these

three types of interactions, and each CPT in M is restricted to a parameter space that

matches the interaction types on the incoming edges to a node. By M we denote just

the structure and regulatory class of each edge in the regulatory model. For a vector of

parameters p for all CPTs, let Mp refer to the full Bayesian network with all parameters

specified.

The CPT for each node specifies the probability distribution for that node

under each variable setting of its parents. For a child node C in M , the parent set

Parents (C) can be partitioned into three sets according to the type of interaction

on each edge: the set R(C) for all repressive parents, the set A+(C) for all additive

54



activating parents, and the set A×(C) for multiplicative parents. This definition allows

a regulatory gene to have different interaction types with each of its child genes. Given

a setting of the variables Parents (C), we define a function that maps the repression

and activation to an expected state for C:

f(R(C), A+(C), A×(C)) =

 ∏
r∈R(C)

(1− r)

 ∏
a∈A×(C)

a

( max
a∈A+(C)

a

)

With this helper function, the CPT for C in M is restricted to:

Pr (c | Parents (C)) =


pParents(C) if c = f(R(C), A+(C), A×(C))

1− pParents(C) otherwise

where pParents(C) is restricted to be in the range (0.5, 1.0]. Note that pParents(C) is

unique to each possible setting of Parents (C). For a node N with no parents, the prior

is Pr (N = 1) = 0.5.

5.4 Regulatory Model Score

To score a model M , we evaluate the likelihood of the data D given the full

JIN model:

Score(M) = max
p

Pr (D | JIN(Mp, D,G))− |p|
2

lnn

where the |p| denotes the number of free parameters for all CPTs. This score corre-

sponds to the Bayesian Information Criterion [105].

Due to time and implementation constraints, this maximization was imple-

mented by Mrs. Kanabar as an approximation rather than as an exact maximization.
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The maximum was taken over 200 independent random parameter samples p, rather

than the full parameter space.

5.5 Network Search

To infer a regulatory model for our data, we must search through the hypoth-

esis space of regulatory models in order to find a network that has a high score. We

used a stochastic hill-climbing search method to find a M with a high score.

This stochastic hill-climb starts at a particular model, M i, and then performs

modifications to M i, looking for a small change that results in a higher score, or with a

small probability, a small change that decreases the score. This procedure resulted in

identical results to an exhaustive greedy hill climb, but was much faster due to fewer

models being scored at each step of the hill climb. Once such an improvement is found,

the current model is changed to this slightly modified model we is now labeled M i+1,

and the process iterates using M i+1 in place of M i. The procedure stops when no

modifications pass the selection criteria.

Given a regulatory model M , we define the set Succ(M) to consist of all

regulatory models that are modifications of M in one and only one of these ways:

• Modification of interaction. For one edge e in M , the regulatory class of the

interaction is changed. See §5.3 for all regulatory classes.

• Deletion of interaction. One of the edges e in M is removed from M .
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• Addition of interaction. One new edge is added to M , with any possible

regulatory class, such that M remains acyclic.

• Reversal of interaction. One edge in M is reversed, keeping the same regula-

tory class, such that M remains acyclic.

During one iteration of the hill climb, elements of Succ(M) are tested to see if

any pass the selection criteria, and the first element that does is used to start the next

iteration. To prevent bias towards any particular modification, elements are drawn

from Succ(M) in a random order. The selection criteria for selecting the successor of

model M is stochastic, and has two sufficient criteria. First, any model M ′ such that

Score(M ′) >= Score(M) will pass. Second, if Score(M ′) < Score(M), then M ′ will

pass with with probability Score(M ′)
Score(M) . This non-determinism is intended to escape a

weak local maximum during the search .

Network search is accomplished by performing hill-climbing from 1000 random

starting points, and saving the final model and score from each of these 1000 random

climbs. The final predicted network is the best-scoring model from any hill climb.

Confidence in a particular edge of this final model is assessed by averaging over the

results of all hill climbs. Let Contains(e,M) have value 1 if M contains the edge e

with any regulation class, and 0 if M does not contain e. Then the edge score is defined

as

EdgeScore(e) =
∑

M Contains(e,M)Score(M)∑
M Score(M)

.

The edge score can also be calculated for potential edges that were not in the highest
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scoring network, so that confidence in non-interaction is also assessed.

5.6 Prediction of V. cholerae biofilm network

V. cholerae like many bacteria, form colony biofilms. These biofilms help

to protect colonies in various environments, and are thought to be highly involved in

changes in pathogenicity. The Yildiz lab has created deletion strains of three regulators

of V. cholerae biofilm, HapR, VpsT, and VpsR, and of all possible combinations of

these deletions [12]. Each of these deletion strains change the visual phenotype of

biofilm. In addition, deletions of each of these strains affect the mRNA expression

of the Vibrio polysaccharide (VPS) gene clusters vps-I (VC0917-VC0927) and vps-II

(VC0934-VC0939). The Yildiz lab expression profiled each deletion strain through

competitive hybridization on a microarray with the wildtype strain, resulting in a data

matrix D of log ratios of expression between deletion strain and wildtype strain. This

original data resulted in a genotype matrix G with seven rows, with all seven possible

deletion strains in the first column and the wildtype strain in every entry in the second

column.

We augmented the genotype matrix G and data matrix D with additional

virtual competitive hybridizations by comparing all pairs of deletion strains. These

virtual observations alleviate the loss of information from discretization, as the dif-

ferences of values in discretized space is far less accurate than the discretization of

differences. For every unique pair (i, j) such that 1 ≤ i ≤ j, 2 ≤ j ≤ 7, and Gi2 = Gj2
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Figure 5.4: Predicted Biofilm Network. A. The predicted V. cholerae biofilm regula-
tory model from JIN in graph (left) and matrix (middle) form. The transitive closure
of the predicted model is shown in matrix form on the right. Each edge in the graph is
labeled by its edge score. In the matrix representation, red entries represent activating
interactions, green entries represent inhibiting interactions, and blank entries indicate
the lack of direct interaction. B. Potential regulatory interactions supported by liter-
ature. As in A., the network is shown in graph and matrix form. The data for the
literature network is adapted from Kanabar et al.[70]. Less saturated colors indicate
potential interactions with less support.
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we add to G an additional row with index k. The values of this row are Gk1 = Gi1

and Gk2 = Gj1. This virtual hybridization is therefore a competitive hybridization

between the genotypes Gk2 and Gj1. We also add a corresponding data row to D with

index k, such that Dkl = Dil−Djl. Since elements of D are log ratios between strains,

and the denominator strain is identical for i and j, these augmented data rows are

log-ratios between deletion strains if we assume that the background strain contains

approximately the same value in i and j. Finally, the data matrix D was discretized

into the states {−1, 0, 1} at boundaries of −1.3 and 1.3, corresponding to fold-change

cutoffs used in a previous analysis of this data [12].

Network search was performed as described in §5.5 and resulted in the network

shown in Figure 5.4A. All predicted edges had extremely high edge scores, indicating

that all models without those edges had extremely small data likelihood compared to

models with the edges. The edges scores for potential edges that were not predicted did

not exceed 0.01, indicating that there is a strong separation between predicted edges

and predicted non-edges.

The predicted network is highly concordant with evidence from the litera-

ture. Figure 5.4B shows the transitive closure of the predicted model and potential

interactions from previous data. The transitive closure is relevant for comparison to

previous data, as the previous measurements of interaction may be the result of transi-

tive interactions. Since potential regulatory models in JIN must be acyclic, we can not

predict all possible potential interactions shown in the literature network. However,

the predicted network is consistent with the highest confidence potential interactions.
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Figure 5.5: Significance of biofilm network. A. A histogram and density estimation of
the LLR of vps genes and uncorrelated genes under the inferred biofilm regulation net-
work. B. Histogram of Kullback-Liebler divergences between training and uncorrelated
genes for 100 null sets of training genes. The vertical red line indicates the divergence
for the biofilm genes shown in A.

We assessed statistical significance of the network by the separation in model

fit between the training genes and a background made up of uncorrelated genes. A

single gene’s fit to the model can be assessed by a log-likelihood ratio (LLR), where

the ratio is between the likelihood of the gene’s data under the predicted model over

the likelihood under a null model. For a gene with column index j, this is

LLR(j |Mp) =
∏
i

Pr (Dij | J(Mp, D,G))
Pr (Dij | J(M∅, D,G))

.

Here, Mp is the regulatory model and parameters found through network search, and

M∅ is the regulatory model with no interactions. Figure 5.5A shows a histogram of

the log-likelihood ratios for each gene in the vps gene cluster and a histogram of the

LLRs for genes uncorrelated to the vps gene cluster. We defined uncorrelated genes as

those with an absolute Pearson correlation to the median of training genes that is less

than 0.2.
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Figure 5.6: Biofilm network expansion. A histogram of log-likelihood ratios for all
genes on the microarray. The LLR of genes used to infer the network are shown with
red lines.

We found a significant difference between the fit of biofilm genes and un-

correlated genes. The Kullback-Liebler (KL) divergence between the fit of biofilm

genes and uncorrelated genes was 5.4 bits. To establish a null distribution of KL diver-

gences between query genes and uncorrelated genes, we simulated 100 random query

sets to be the same size as the vps gene cluster, learned a network, and calculated the

KL divergence between query genes and uncorrelated genes. This null distribution is

shown in Figure 5.5B, along with the KL divergence of the vps training set at 5.4 bits.

Fitting a gamma distribution to the null KL divergences with maximum likelihood re-

sults in a p-value of 3×10−12. Thus, the vps cluster’s fit to the data is indeed significant

with respect to this background model.
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LLR
Corr.
Rank Locus Name Description

7.14 8 VC2445 exeA general secretion pathway protein A
7.03 34 VC1888 bap1 biofilm-associated protein
6.83 116 VC2732 epsE general secretion pathway protein E
6.77 99 VC2730 epsG general secretion pathway protein G
6.77 270 VCA0570 Sui1 family protein
6.74 69 VC0483 hypothetical protein
6.73 287 VC1064 lipoprotein-related protein
6.69 114 VCA0612 mscL large-conductance mechanosensitive channel
6.67 86 VC0930 rbmC rugosity-biofilm modulator
6.67 30 VC0931 rbmD rugosity-biofilm modulator
6.67 12 VC1701 hypothetical protein
6.62 67 VC1320 carR DNA-binding response regulator
6.51 62 VC1935 CDP-diacylglycerol-glycerol-3-phosphate 3-

phosphatidyltransferase-related protein
6.48 133 VC1195 lipoprotein, putative
6.48 9 VC0933 rbmF rugosity-biofilm modulator

Table 5.1: Top predictions for new vps pathway members. Genes are sorted by de-
creasing LLR. The correlation rank column is calculated by sorting genes by decreasing
Pearson correlation to the median expression profile of the vps gene clusters.

5.7 Expansion of V. cholerae biofilm network

Though a number genes in V. cholerae are known to function in biofilm for-

mation, it is likely that there are many more yet to be discovered. Many genes in

V. cholerae have no characterized function. Some only have a homolog in another

species with a known function, and those genes with known functions may have fulfill

additional roles in the cell. Therefore, finding new biofilm-associated genes is of great

interest. We can use the predicted JIN model to find additional biofilm genes, instead

of a simpler gene expression correlation method. Indeed, the top predictions from JIN

had more evidence for biofilm-association than those predicted by correlation to known
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biofilm genes (Table 5.1).

By scoring the LLR of every gene in the microarray, we found genes other

than the training genes that have high LLR. Figure 5.6 shows a histogram of LLR for

every gene measured on the microarray, with marks for known biofilm response genes

in the vps-I and vps-II gene clusters. There are several other genes with similar or

higher LLRs under this regulation model. Table 5.1 shows the 15 genes with highest

LLR which were not used for training.

There is independent evidence that several of these genes are related to biofilm

formation in V. cholerae. The 5’ upstream regions of VC2445, VC0483, and VC0930

contain sequences with high similarity to the VpsR consensus binding site. Several of

the genes, VC0930, VC0931, and VC0933, are located between vps-I and vps-II. The

gene carR (VC1320), has been verified as a DNA-binding biofilm regulator [13].

5.8 Conclusions

In this chapter I have presented the Joint Intervention Network, a method for

learning a gene network from downstream expression phenotypes under gene knockouts.

This method captures epistatic reasoning. The network predicted by JIN for V. cholerae

biofilm closely matches interactions found in the literature. In addition, the regulatory

network predicted by JIN is useful for finding other genes under the same regulation

program. The biofilm network learned by JIN predicted many novel biofilm-associated

genes. This structured expansion of the biofilm network was more accurate at finding
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biofilm genes than using a simple correlation method.
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Chapter 6

Factor graph Nested Effect Model

The availability of RNAi for knockdown and microarrays for profiling gene

expression make for a natural combination of measuring many phenotypes under per-

turbation. Markowetz et al. [83] describe a method for inferring a signaling network

from such data. They defined a signaling network as a graph with two parts. The

genes subject to RNAi knockdowns, referred to as S-genes, are arranged in a directed

graph describing the transference of signal from the upstream source to downstream

effects. Some genes from the microarrays, referred to as E-genes, were each attached

to a single signaling gene. The signaling network describes the response of the E-genes

under perturbation.

Given such a network, Markowetz’s method is able to score the likelihood

of the observed microarray data. When the network space is tractably enumerable,

then the best network can be found simply by scoring all networks. However, if the

number of signaling genes is n then number of possible networks scales as O
(

2(n2)
)

.
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Thus, finding the optimal network using exhaustive search is tractable only for a small

handful of genes. I wished to use the method to place eight human genes in a pathway,

and so have developed faster methods for inferring networks. In this chapter I introduce

an intuitive extension of the original NEM method, model averaging. I then introduce

the Factor Graph Nested Effects Model, which is used in the rest of this dissertation

6.1 Nested Effect Model Averaging

I evaluated the likelihood of a subset of models and then assigned a posterior

probability to each potential link. By “link,” I mean either the “forwards” and the

“backwards” directions between a pair of genes. For example, A → B and B → A

are two separate links, present or absent in the network independently. Denote the

likelihood of the data as D, and the subset of possible networks as M. Then I assign

the probability of any edge between A and B as approximately:

Pr (A→ B | D) ≈
∑

M∈M Pr (D |M) Pr (A→ B |M) Pr (M)∑
M∈M Pr (D |M) Pr (M)

Pr (A→ B) (6.1)

I assemble a network from posterior probabilities by choosing a threshold

probability, and then taking only those links that pass that threshold. Since there

are O
(
n2
)

links, each with its own posterior probability, there are at most O
(
n2
)

thresholds. Each threshold results in a unique network, and I find the most likely

network by evaluating the likelihood of each.
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key rel tak mkk4hep
key −2.5 · 10−7 -130 -94
rel −5.7 · 10−7 -130 -94

tak −9.2 · 10−1 −9.2 · 10−1 > −1 · 10−99

mkk4hep −7.8 · 101 −7.0 · 101 -69
(a) Log posterior probabilities for all links

0.99

0.40

0.40
> 0.99

key rel

tak

mkk4/
hep

(b) Correct links and their estimated poste-
rior probabilities

Figure 6.1: Estimated posterior probabilities of each link. The likelihood of the data
for every linear network was calculated, and the posterior probability was calculated
with equation 6.1 and a prior link probability of 0.25. In table 6.1(a) the source gene
of the link is on the left and the target is along the top. Highlighted links were chosen
to be in the network.

6.1.1 Linear models recover D. melanogaster immune response

In order to test model averaging, I evaluated a D. melanogaster LPS signaling

dataset [14] that had previously been analyzed via exhaustive search [83] successfully.

In order to ensure a sample that considers all possible orientations of edges, I used the

subset M of all linear permutations of the signaling genes. This subset, though still

super-exponential, i.e. O
(
2n lnn

)
, can still be evaluated up to approximately 10 genes

on a desktop computer in less than a day using my current implementation. In order

for the computation to be numerically stable, I performed all calculations in log space

using the usual identity for addition of log space numbers [27].
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Linear model averaging recovers the signaling network found by both the orig-

inal biological investigation [14] and the subsequent computational investigation [83].

I chose a prior on network features of 0.25, on the assumption that genes are at least

minimally connected, i.e. that there are at least three of the possible twelve directed

edges. The gene tak is at the top of the signaling hierarchy, signaling to all other genes.

The genes rel and key are linked equivalently, indicating that their phenotypes under

knockdown are indistinguishable. Linear networks without the link tak → mkk4/hep

have data likelihoods so much worse than those with the link that the posterior prob-

ability of the link is greater than 1− 2−2048

The links from tak to key and rel have the lowest posterior probability of the

true links, but are still orders of magnitude stronger than the posterior probabilities of

any of the false links. Further, with a prior probability on the links that is based on the

true model, 5/12, these links would have a posterior probability of 2/3. One possible

reason for the lower probability of these links is due to the equivalence of key and rel

in that they have links in both directions between them. Therefore removing just one

of the links from tak will still result in an identical signaling network, since the signal

is transitive in this model

An advantage of the model averaging approach over exhaustive search is that

it provides posteriors on individual network links. Using Markowetz’s method assigns

a single likelihood to the entire network. Ranking individual features can guide further

investigations, and help assess where to trust the most likely network.

Attempting to predict cancer networks failed to produce any confident net-
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works. Discretization of the data proved quite challenging, as there are few replicates

from which to estimate variance. Without a reliable estimate of variance, placing a

discretization boundary at an arbitrary level only emphasized platform effects, and a

proper normalization was difficult.

6.2 Interaction Modes

My goal is to automatically identify genetic interactions among a set of signal-

ing genes from gene expression changes observed under their knock-down. The signaling

genes represent a set of genes that prior experimental evidence suggests participate in

a common pathway. To infer a network, I use an extension of the Nested Effect Model

(NEM) introduced by Markowetz et al. in 2005[83]. The set of silenced genes are de-

noted as the set S (or S genes). An NEM is a probabilistic formulation that measures

how well a directed graph of the S-genes is consistent with expression changes collected

under the separate silencing of each S-gene (i.e. only single knock-downs are considered

in NEM). While the method can make use of either complete deletion mutants or genes

that may be partially silenced, here I use the term knock-down to refer to either case.

I denote the knock-down of S-gene A as ∆A. I also refer to a set of effect genes as the

set E (or E genes), for which gene expression data is available. The expression of an

E-gene e is assumed to be influenced by at most one S-gene. The key assumption of

NEMs is the expression changes observed under ∆A are an approximate superset of

the changes observed under ∆B if gene A acts upstream of gene B in a pathway. I use
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Figure 6.2: Observed inhibitory effects and signaling in a yeast compendium. 6.2(a)
Histogram of percentage of up-regulated gene expression from gene knockdown in the
Hughes et al. (2000) compendium. In each deletion strain, gene expression changes
with a p-value better than 0.05 were selected, and then assigned to up-regulated or
down-regulated according to their expression log-ratio. The percentage of each strain’s
up-regulated expression change is plotted in the histogram. Presence of up-regulated
expression under gene deletion is evidence of an inhibitory interaction close to the
deleted gene. 6.2(b) Histogram of interaction types in S. cerevisiae in the KEGG
pathway database. In the KEGG ontology, each interaction may be categorized with
more than one label. Activation and inhibition are antonyms, as are expression and
repression.

the shorthand A→B to represent this generic directed interaction.

In addition to identifying A→B, the E-gene expression changes on the microar-

ray can be used to infer the “sign” of the interaction, either activating or inhibiting.

In this framework, I extend the interactions so that an upstream gene can have either

an inhibitory or stimulatory effect on downstream genes. Biological networks exhibit

a large degree of inhibitory interactions. Figure 6.2 shows two estimates of the degree

of inhibitory interactions from expression and pathway compendiums. An increase in
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a gene’s expression under gene knockout indicates that there is some inhibitory path

between the gene knockout and the gene whose expression increased. Figure 6.2(a)

indicates that for the Hughes compendium of deletions, that a gene deletion chosen at

random will most likely result in more genes up-regulated than down-regulated. This

provides evidence that a significant number of transitive paths are inhibitory in the

yeast biological network. Figure 6.2(b) shows the number of genes annotated as either

activating or inhibiting in hand-curated pathways. A significant fraction of these direct

interactions are annotated as inhibitory. Taken together, these figures show that inhi-

bition plays a large role in the yeast cellular network, and therefore is likely to play a

large role in the cellular networks of most other organisms. Modeling and distinguish-

ing between activation and inhibition will therefore be quite informative. Additionally,

I show in the following chapter that distinguishing between activated and inhibitory

interactions and effects allows for better performance in both network inference and

network expansion.

Figure 6.3 presents an example, similar to the work of Fröhlich et al. in

2008[38] that motivates the use of signed interactions. E-genes E1 through E13 are

listed from top to bottom according to where they are attached to the network. De-

pending on the connections of the S-genes to one another and to the E-genes, a dis-

ruption in an S-gene will cause E-genes to either increase or decrease in expression

relative to wild-type. For example, E-gene E7 decreases under ∆B relative to wild-type

because the wild-type activation by B is absent in the deletion. On the other hand,

the expression of E10 also decreases under ∆B relative to wild-type but as a result
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Figure 6.3: Hypothetical example with four S-genes, A, B, C, and D. The graph contains
one inhibitory link, BaD (left). A heatmap of E-gene expression under knockdown of
each S-gene shows both inhibitory and stimulatory effects (middle). Scatter plots of
the C, A, B, and D knockouts show that expression fits in the shaded preferred regions
of each interaction (right). The inhibitory link explains some of the “observed” data:
expression changes under ∆D (bright red or bright green entries in the heatmap) occur
in a subset of the E-genes for which the opposite changes occur in ∆B.

of a different mechanism. In wild-type, E10 is expressed at a baseline level because

its repressor, the product of gene D, is inhibited by B’s product. However, in the B

deletion, D is de-repressed, leading to inhibition of E10. This toy example illustrates

the disambiguation of inhibition and activation both for S-gene interactions and E-gene

attachments making it possible to account for an expanded set of mechanisms leading

to the observed expression changes.

The E-gene expression changes are available in a data matrix X where each

column gives the difference in expression of each E-gene under the deletion of a single S-

gene relative to wild-type. X may also contain replicates in the form of repeated S-gene

knock-downs. The entry XeAr represents e’s expression change under the rth replicate

of ∆A. Furthermore, I assume that an unknown expression “state” for each E-gene
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under each knock-down, determines its set of expression changes observed across the

{XeAr} replicates in the microarray data. The matrix Y records a hidden state for each

E-gene under each knock-down, where entry YBa is the state of E-gene e under ∆A. I

allow the states to be ternary-valued +1,−1, 0 representing whether e is up-regulated,

down-regulated, or unchanged under ∆A relative to wild-type respectively.

Nested effects models include two sets of parameters. The parameter set

Φ records all pair-wise interactions among the S-genes and the parameter set Θ de-

scribes how each E-gene is attached to the network of S-genes. In the original NEM

formulations[83, 84, 38] Φ is a binary matrix with entry φAB set to one if S-gene A acts

above S-gene B and zero otherwise. If φAB = φBA = 1 then the S-genes are assumed

to operate at an equivalent position in the pathway. Note that indirect interactions

are also represented in Φ so that if φAB = 1 and φBC = 1 it implies that φAC = 1.

A parsimonious network among the S-genes is solved for by computing the transitive

reduction of Φ.

To allow for both stimulatory and inhibitory interactions in this formulation,

φAB can assume six possible values for each unique unordered S-gene pair A,B. I refer

to these values as interaction modes. The possible values are: i) A activates B, A→B;

ii) A inhibits B, AaB; iii) A is equivalent to B, A = B; iv) A does not interact with

B, A 6=B; v) B activates A, B→A; and vi) B inhibits A, BaA. Additional interaction

modes, such as A 7→B, A←[B, and A àB are possible, but have not been considered in

this dissertation and are saved for future work.

Plotting the response of E-genes under ∆A and ∆B yields a scatter-plot that
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Figure 6.4: Knock-out expression for a known inhibitory interaction.Expression levels
of effect genes under the DIG1/DIG2 knock-out (x-axis) plotted against their levels
under the STE12 knock-out (y-axis) as detected in an expression compendium[57]. The
α = 0.05 significance of expression change is indicated in dashed lines. DIG1/DIG2 is
known to inhibit the activity of STE12

may provide a signature for the type of interaction between A and B. For example,

Figure 6.4 shows a scatter-plot of gene expression changes from the Hughes et al.

yeast knock-out compendium[57] for a pair of knock-outs of the well-known pheromone-

response genes: ∆STE12 and the ∆DIG1/DIG2 double knockout. Comparing the

scatter-plot for these pheromone-response genes to the patterns in Figure 6.5, it can

be seen to match the inhibitory interaction mode more closely than the other modes,

which is consistent with DIG1/DIG2’s known inhibition of STE12. Figure 6.5 shows

an example of the first four modes from the previous paragraph. Shaded regions denote

consistent E-gene responses for each mode.

An interaction mode determines a constraint on the observed E-gene expres-

sion changes. For example, plotting the expression changes of E-genes that act down-

stream of either A or B for the generic A→B interaction mode produces points in one of
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Figure 6.5: Interaction Modes. Observed E-gene expression changes are compared
to five possible types of interactions between two S-genes, A and B (i-v). The top
row illustrates the expected nested effects relationship for each type of interaction
mode: circles represent sets of E-genes with expression changes consistent with either
activation (blue circles) or inhibition (yellow circles). Scatter-plots for each interaction
mode show the hypothetical expression changes under ∆A (x-axis) and ∆B (y-axis)
for all E-genes (circles). E-gene levels are either consistent (open) or inconsistent
(filled) with the mode. Shaded regions demark expression levels consistent with each
interaction model. The example shows expression changes that most closely match the
inhibition mode (indicated by the greatest number of closed circles).
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the five shaded regions shown in Figure 6.5 above the label Activation. Figure 6.5 shows

an example where the inhibitory interaction mode is the best match to the data because

a higher number of E-gene changes fall within consistent regions (open points) than in

inconsistent regions (filled points). Genome-wide expression changes detected on the

microarrays can be used as quantitative phenotypes to identify a variety of interactions

between pairs of S-genes. Note that two genes are equivalent if their knock-downs lead

to significantly similar expression changes, which may predict, for example, that they

form a complex.

Figure 6.5 also illustrates the generic interaction mode A>B equivalent to the

interaction of genes in previous NEM methods. In §7.2 I compare FG-NEM results to

two unsigned variants to estimate the change in predictive power as a function of the

introduction of sign.

6.3 Pairwise Network Formulation

My goal is to find a structure among the S-genes that provides a compact

description of X. To find a network that best fits the data, I take a maximum a

posteriori approach as in [84, 38] to identify the Φ that maximizes the posterior:

J(X) = arg max
Φ

{Pr (Φ | X)} (6.2)

= arg max
Φ

{∑
Θ

∑
Y

Pr (Φ,Θ, Y | X)

}
(6.3)

where Θ refers to the attachment point of each E-gene into the network and Y refers

to the hidden E-gene states. Attachment points for effects, as shown previously in
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Figure 6.3, determine the predicted response for an effect from a knockdown. Later, Θ

will be parameterized slightly differently than in previous NEM formulations. Applying

Bayes’ Rule and dropping Pr (X), which is constant with respect to the maximization

obtains:

J(X) = arg max
Φ

{
Pr (Φ)

∑
Θ

Pr (Θ | Φ)
∑
Y

Pr (Y | Φ,Θ) Pr (X | Y )

}
(6.4)

= arg max
Φ

{
Pr (Φ)

∑
Θ

∑
Y

Pr (Y | Φ,Θ) Pr (X | Y )

}
(6.5)

The approximation in the last step uses the assumption that any E-gene attachments

are equally likely given a network structure; i.e. Pr (Θ | Φ) is assumed to be uniformly

distributed and is ignored in this approach. Pr (Φ) represents a prior over S-gene

networks.

As in previous NEM formulations, I assume that each E-gene is attached to

a single S-gene and that each E-gene observation vector across the knock-downs is

independent of other E-gene observations. The maximization function can then be

written:

J(X) = arg max
Φ

{
Pr (Φ)

∑
Θ

∑
Y

∏
e∈E

Pr (Ye | Φ, θe) Pr (Xe | Ye)

}
(6.6)

= arg max
Φ

{
Pr (Φ)

∏
e∈E

∑
Θ

∑
Y

Pr (Ye | Φ, θe) Pr (Xe | Ye)

}
(6.7)

= arg max
Φ

{
Pr (Φ)

∏
e∈E

Le(Φ)

}
(6.8)

where Xe and Ye are the row vectors of data and hidden states for E-gene e respectively,

and θe records the attachment point information for E-gene e. After rearranging the
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products and sums, I introduce the shorthand Le to represent the likelihood of the data

restricted only to E-gene e under a particular model Φ and θe.

Previous approaches decompose Le over the knock-downs, which assume the

S-gene observations are independent given the network and attachments (see Fröhlich

2008[38] for an example of such a derivation). To facilitate scoring the expanded set of

interaction modes mentioned earlier, I replace Le with a function proportional to Le,

L′e. L
′
e is defined as a product of pair-wise S-gene terms:

L′e =
∏

{A,B}⊂S
A≺B

∑
θeAB

∑
YeA

∑
YeB

Pr (YeA, YeB | φAB, θeAB) Pr (XeA | YeA) Pr (XeB | YeB)

where θeAB represents the local attachment of E-gene e, i.e. the attachment of e in the

network relative only to the pair of S-genes A and B. This local attachment represents

whether there is a path from A or B to e, and the sign of that path. The parameter θeAB

can therefore take on five possible values from the set {A,−A,B,−B, 0} representing

that e is either up- or down-regulated by A, either up- or down-regulated by B, or not

affected by either S-gene, respectively. Note that both θeAB and φAB are indexed by a

pair, A,B, and that an arbitrary total ordering of the variables, ≺, has been introduced

so that φAB is only counted once. φAB defines the interaction mode between S-genes A

and B. Given an interaction mode φAB and the attachment point θeAB, the expected

response of e under each knockdown, YeA and YeB, is entirely determined. Therefore

the probability Pr (YeA, YeB | φAB, θeAB) has value 1 if YeA and YeB are consistent with

the interaction and attachment point, and 0 if inconsistent.
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Assuming the replicates are independent given the E-gene states, Pr (XeA|YeA)

can be written as a product over replicate terms:
∏
r∈RA

Pr (XeAr | YeA) where Ra is

the set of replicates for ∆A and Pr (XeAr | YeA) is modeled with a Gaussian distribution

having mean µ and standard deviation σ estimated from the data. While I used hard

constraints to model consistent and inconsistent expression changes (corresponding to

the rigid boundaries of the regions drawn in Figure 6.5), such constraints could be

softened to use factors with belief potentials between zero and one. Also, note that

even though the interaction modes in Figure 6.5 show boundaries, observations that fall

outside these illustrated boundaries do not have zero probability since Pr (XeA | YeA)

is modeled as a Gaussian distribution and therefore assigns non-zero probabilities over

all possible expression values.

Substituting L′e for Le in Equation (6.8) and approximating summation over

attachment points θeAB with maximization results in the maximizing function used in

the FG-NEM approach:

J(X) = arg max
Φ

Pr (Φ)
∏
e∈E

{A,B}⊂S
A≺B

max
θeAB
YeA
YeB

Pr (YeA, YeB|φAB, θeAB) Pr (XeA|YeA) Pr (XeB|YeB)

6.4 Transitivity Constraints and Model Priors

The prior over interactions, Pr (Φ), can represent preferences over specific

interactions in the S-gene graph, allowing the incorporation of biologically-motivated

constraints to guide network search. For example, the interaction priors for genes in a

common pathway or genes whose products have been detected to interact in protein-
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protein interaction screens could be set higher than the priors for arbitrary pairs of

S-genes. In this thesis I have used the prior both with and without external biological

information. Without external biological information, the prior encodes a basic prop-

erty of the S gene graph: that it should exhibit transitivity to force pair-wise interaction

modes to be consistent among all triples. Using transitivity, all paths between any two

genes, A and B, are guaranteed to have the same overall effect; i.e. the product of the

signs of individual links along different paths between A and B are equal.

In order to preserve the transitivity of identified interaction modes, the prior

is decomposed over interaction configurations into transitivity constraints on all triples

of S-genes:

Pr (Φ) ∝

 ∏
{A,B,C}⊂S
A≺B≺C

τABC (φAB, φBC , φAC)


 ∏
{A,B}⊂S
A≺B

ρAB (φAB)

 (6.9)

where τ is zero if the triple of interactions are intransitive, and one if the interactions

are transitive. The product over ρ factors in Equation (6.9) encodes evidence from

high-throughput assays, such as protein-protein binding and protein-DNA binding in-

teractions (see §8.3, “Physical Structure Priors”). The transitivity constraint includes

both the direction of interactions and the sign of interactions. As S-gene interactions

are signed, the transitivity constraint forces the sign of the product of two edges to

equal the sign of the third; e.g. if AaB and BaC, then A→C.

The function τ can be formally defined as follows. For each interaction φAB

let f(φAB) denote the forward signal of A to B, and let b(φAB) denote the sign of the
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signal from B to A:

f(φAB) =


1 if φAB ∈ {→,=},
0 if φAB ∈ {←, 6=,`},
−1 if φAB ∈ {a}.

b(φAB) =


1 if φAB ∈ {←,=},
0 if φAB ∈ {→, 6=,a},
−1 if φAB ∈ {`}.

Additionally, using Iverson notation where let [predicate] has value one if predicate is

true, and zero if false, let

t(A,B,C) = 1− [f(φAB) 6= 0][f(φBC) 6= 0][f(φAB)f(φBC) = b(φAC)]

The value of a transitivity constraint τABC (φAB, φBC , φAC) can now be defined as:

τABC (φAB, φBC , φAC) = t(A,B,C)t(A,C,B)t(B,A,C)t(B,C,A)t(C,A,B)t(C,B,A).

A result of modeling transitivity is that a directed cycle of stimulatory in-

teractions will also imply activation between any pair of S-genes in the cycle, in both

directions. Therefore, the method clusters such S-genes into equivalence interactions.

While network structures are constrained to reflect more intuitive models, the

decomposition introduces interdependencies among the interactions, adding complexity

to the search for high-scoring networks. Importantly, max-sum message passing in

a factor graph[74] provides an efficient means for estimating highly probable S-gene

configurations. We next describe how the problem is recoded into message-passing on

a factor graph.

6.5 Model Inference Using a Factor Graph

The formulation above provides a definition of the objective function to be

maximized but says nothing about how to search for a good network. The search space
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of networks is very large making exhaustive search intractable for networks larger than

five S-genes[83]. To apply the method to larger networks, I required a fast, heuristic

approach. Markowetz et al. [84] introduced a bottom-up technique to infer an S-

gene graph. They identify sub-graphs of S-genes (pairs and triples) and then merge

the sub-graphs together into a final parsimonious graph. Fröhlich et al. (2008) [38]

use hierarchical clustering to first identify modules, subsets of S-genes with correlated

expression changes. Networks among the modules are exhaustively searched and a final

network is identified by greedily introducing interactions across modules that increase

the likelihood.

Here, I introduce the use of a graphical model called a factor graph to rep-

resent all possible NEM structures simultaneously. The parameters that determine

the S-gene interactions, Φ, are explicitly represented as variables in the factor graph.

Identifying a high-scoring S-gene network is therefore converted to the task of iden-

tifying likely assignments of the Φ variables in the factor graph. A factor graph is a

probabilistic graphical model whose likelihood function can be factorized into smaller

terms (factors) representing local constraints or valuations on a set of random vari-

ables. Other graphical models, such as Bayesian networks and Markov random fields,

have straightforward factor graph analogs. A factor graph can be represented as an

undirected, bi-partite graph with two types of nodes: variables and factors. A variable

is adjacent to a factor if the variable appears as an argument of the factor. Factor

graphs generalize probability mass functions as the joint likelihood function requires

no normalization and the factors need not be conditional probabilities. Each factor
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encodes a local constraint pertaining to a few variables.

Figure 6.6 shows the factor graph representing the NEM for the example S-

gene network from Figure 6.3. Each random variable is represented by a circle and

each conditional probability term in Equation (6.3) and Equation (6.9) is represented

by a square. The factor graph contains three types of variable nodes. First, every

unique unordered pair of S genes {A,B} has a corresponding variable, φAB, that takes

on values equal to one of the previously mentioned interaction modes (Figure 6.6,

“S-Gene Interactions” level). Second, every E-gene-S-gene pair is associated with a

variable, YeA for the hidden expression state of effect gene e under knock-down A,

(Figure 6.6, “E-gene Expression State” level). Third, every observed expression value

is associated with a continuous variable, XeAr, where r indexes over replications of

∆A (Figure 6.6, “E-gene Expression Observation” level). Figure 6.6 also shows the

expression factors, interaction factors, and transitivity factors of Equation (6.3) and

Equation (6.9).

A Φ that maximizes the posterior is found using max-sum message passing

using all terms from Equation (6.3) and Equation (6.9) in log space. For acyclic factor

graphs, the marginal, max-marginal and conditional probabilities of single or multiple

variables can be calculated exactly with the max-sum algorithms[74]. Message-passing

algorithms demonstrate excellent empirical results in various practical problems even

on graphs containing cycles such as feed-forward and feed-back loops[36, 35, 82, 132].

Here, I use a message passing schedule that performs inference in two phases.

In the first phase, messages from observations nodes XeAr are passed through the ex-
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Figure 6.6: Structure of the factor graph for network inference. The factor graph
consists of three classes of variables (circles) and three classes of factors (squares).
XeAr is a continuous observation of E-gene e’s expression under ∆A and replicate r.
YeA is the hidden state of E-gene e under ∆A, and is a discrete variable with domain
{−1, 0, 1}. φAB is the interaction between two S-genes A and B. Expression Factors
model expression as a mixture of Gaussian distributions. Interaction Factors constrain
E-gene states to the allowed regions shown in the interaction modes of Figure 6.5.
Transitivity Factors constrain pair-wise interactions to form consistent triangles. The
arrows labeled µ and µ′ are messages encoding local belief potentials on φAB and are
propagated during factor graph inference.
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pression factors and hidden E-gene state variables, to calculate all messages µ(YA →

φAB)in a single upward pass. In the second phase, messages are passed between only

the interaction variables and transitivity factors until convergence, as described below.

In the example shown in Figure 6.6, running inference results in assignments of activa-

tion for φAB and φBC (shaded red), inhibition for φBD and φAD (shaded green), and

non-interaction for φAB and φBC (unshaded), which match the NEM structure from

Figure 6.3. For display of inferred S-gene networks, I compute the transitive reduction

of Φ by removing all links for which there is a longer redundant path[121].

Each message µ(φAB → τABC) or µ(τABC → φAB), (denoted by µ and µ′ in

Figure 6.6, respectively), consists of a length six vector, representing the source’s log-

space valuation of six possible interaction types for φAB. The message passing schedule

consists of two-step iterations. µ(φAB → τABC) µ(τABC → φAB) The first step of an

iteration calculates every message from an interaction variable to a transitivity con-

straint, µ(φAB → τABC). The second step of an iteration calculates all messages from

transitivity constraints to interaction variables, µ(τABC → φAB). In order to calcu-

late the first step of the first iteration, every µ(τABC → φAB) is set to [0, 0, 0, 0, 0, 0].

To prevent non-convergence from cyclic activities, each new message is dampened by

arithmetically averaging it (in log-space) with the message from the previous iteration

as well as by normalizing each factor-to-variable message to sum to one. At the end

of each iteration, the change in µ(τABC → φAB) messages is calculated by forming a

matrix of all messages, and calculating the Frobenius norm of the new message matrix

and the previous message matrix. Message passing is terminated when the Frobenius
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norm is less than 0.01, or after 50 iterations.

During message passing the summation over YeA is approximated with a max-

imization step. Max-sum approximation of a marginalization step has been shown to

produce accurate results and converge efficiently for several factor graph applications

to large problems including SAT and clustering[35, 89]. The maximization chooses the

highest probability configuration of attaching an effect at some point relative to a pair

of S genes as well as the sign of the attachment.

6.6 Pathway Expansion

Once a signaling network is identified using the message passing inference

procedure above, the network can be used to search for new genes that may be part

of the pathway. The NEM and FG-NEM framework predict new members that act

in the pathway by “attaching” E-genes to S-genes in the network, or leaving them

detached if their expression data does not fit the model. Attaching E-gene e to S-gene

A asserts that the expression changes of e over all knock-downs are best explained by a

network in which e is directly downstream of A. The E-genes attached to the network

are collectively referred to as the frontier. Frontier genes may be good candidates

for further characterization (e.g. knock-down and expression profiling) in subsequent

experiments.

To gain a global picture for where e is connected, I use a modified NEM

scoring from Markowetz et al. (2005)[83]. The pair-wise attachments for a single E-
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gene connection variable θeAB, provide local “best guesses” for e’s attachment. Rather

than aggregate e’s collection of local attachments, I use NEM scoring, modified to

incorporate both stimulatory and inhibitory attachments, to estimate the attachment

point using the full network learned in the previous step.

Using the notation of Markowetz et al. (2005)[83], NEM scoring assigns a

likelihood to a hidden attachment variable, θe, for each E-gene e. The attachment

variable can take on possible values {1, 2, . . . , |S|}, where each number corresponds to

a single S-gene attachment point. To allow both inhibitory and stimulatory effects, I

allow θe to take on possible values−|S|, . . . , 1, 0, 1, . . . , |S|, where a positive index means

e is activated by S gene A while a negative index means it is inhibited by A. The zero

attachment state represents detachment from the entire signaling network, allowing e’s

expression levels to be independent of any single S gene. Note that this possibility was

not included in the original NEM framework, but a generalization has been described

in Tresch et al. (2008) [115] in which effects can be attached to “null actions” that are

analogous to including a detachment possibility introduced here. NEM model scoring

assigns a likelihood to each possible value of θe, and I choose the value that maximizes

the likelihood as the attachment point.

I calculate a log-likelihood ratio that measures the degree to which e’s expres-

sion data is explained by the network if it is attached to one of the S-genes, compared

to being disconnected from the network, i.e. its likelihood was generated entirely by the

background Gaussian distribution. For E-gene e, the the log-likelihood of attachment
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ratio (LAR) is:

LAR(e) = log

max
i 6=0

Pr (Xe | Φ, θe = i)

Pr (Xe | Φ, θe = 0)

 .

We rank all of the E-genes according to their LAR scores. Top-scoring genes have

data that is more likely to have arisen from the model than a null background. Any

E-gene that has a positive LAR score is considered for inclusion as a frontier gene. In

the applications in subsequent chapters, significance of attachment is tested by several

methods.
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Chapter 7

FG-NEM Performance on Artificial

Networks

One difficulty with current pathway prediction algorithms is that there are

very few examples where all the members of a signaling pathway are known, or all of

the interactions between genes. It can therefore be of interest to examine a prediction

algorithm’s performance on artificial networks and data, as performance can be more

fully assessed than on the incomplete knowledge of biological networks.

In this chapter I first compare FG-NEM methods to the prior NEM method[83]

to show that the factor graph has similar network structure recovery capability with

similar data. Second, I examine the performance of FG-NEM under different data

generation conditions, including the amount of inhibition in the network, the amount

of the network which is included in the S-gene set, the amount of noise in the effect

measurements, and the number of data replicates. These experiments can help guide

90



the experimental design of biological experiments, for example in deciding how many

data replicates to measure.

7.1 Network and Data Generation

To create a synthetic signaling network, I first generated the network among

S-genes containing both inhibition and cycles, and then attached E-genes to this S-

gene network. I created a full underlying network for a set of S-genes, T , by first

generating a random connected acyclic graph, and then adding additional links by

randomly sampling pairs of S-genes. Each interaction was associated with a strength

chosen uniformly between 0.75 and 1. The strength of an interaction determines how

well a signal passes from one S-gene to another, with 1 equal to perfect transmission and

0.75 equal to 25% transmission loss. Any interaction was also chosen to be inhibitory

with probability λ. The parameter λ controls the proportion of inhibitory interactions

between S-genes as well as inhibitory E-gene attachments. For example, λ = 0 produces

a network containing only activating S-gene connections and only activated E-gene

attachments. After generating the S-gene network, a fixed amount of E-genes were

added by choosing a parent S-gene uniformly from all S-genes. This S-gene to E-gene

connection was inhibitory with probability λ.

Given a synthetic signaling network, expression data was generated as follows.

To generate a single data replicate for A, quantized expression responses under ∆A were

simulated by propagating a signal from A to the connected effect genes, keeping track
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of the sign and the strength of the signal. The final signal arriving at E-gene e, se,

was calculated as the product of the strengths and signs of all of the interactions on

the path between A and e. E-gene e was then assigned to the activated (or inhibited)

distribution with probability |se| for se > 0 (or se < 0) and was assigned to the

unaffected distribution with probability 1 − |se|. E-genes thus chosen to be activated

by A in a replicate were given expression levels that were less than their expression levels

in wild-type, as the deletion of the gene results in the loss of activation. Similarly, E-

genes inhibited in a replicate were given expression values from a expression distribution

with a higher mean than wild-type. I refer to the distribution of expression changes of

E-genes normally activated by A as the “activated distribution” and to the distribution

of expression changes for repressed genes as the “inhibited distribution.” An E-gene e’s

expression value under the ∆A replicate was generated by sampling from the activated,

inhibited, or unaffected distributions depending on whether the path from A to e was

inhibitory, stimulatory, or not connected (i.e. either e was not downstream of A or e was

disconnected from the network completely). Replicated hybridizations were simulated

by repeating the above procedure R times.

To model incomplete knowledge of the network, a subset of S-genes was se-

lected from T such that the resulting set of S-genes had size k · |T | for 0 < k ≤ 1. Only

data from this subset was used to infer networks.

The parameters λ, k, and R were varied for generating artificial networks.

The number of E-genes per S-gene was set to 20 and cycles were always present in

the network to model feedback loops that are often present in real biological networks.
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Unless otherwise noted, the number of S-genes in the network was sampled uniformly

in the range of five to 15 and all S-genes were used in network recovery.

The E-gene expression distributions were modeled as Gaussians with unit

variance and means equal to zero for the unaffected distribution, 1.75 for the inhibited

distribution, and 1.75 for the activated distribution. Note that the activated distribu-

tion has a negative expression change on average since E-genes normally activated by

a signal have lower expression levels relative to wild-type in knock-outs that block the

activating signal. By the same reasoning, inhibited E-genes have positive expression

changes relative to wild-type if a deletion blocks a normally inhibiting signal.

To estimate realistic levels of separation between the activated and inhibited

distributions, I calculated the difference in mean expression of genes residing in path-

ways with somewhat opposing operations in the cell, such as subunits of the proteasome

or ribosome. While the cell may turn on genes in both pathways, some conditions might

favor protein expression over degradation (or vice versa). I reasoned that these condi-

tions provide an estimate of the average difference in expression of an affected (up- or

down-regulated) gene compared to an unaffected gene. I collected expression data for

all of the genes in the proteasome and ribosome GO categories from a compendium of

3883 H. sapiens, 1049 S. cerevisiae, and 334 D. melanogaster microarray samples (see

Figure 7.1). For each sample, a standardized absolute difference was calculated by com-

puting the difference between the mean ribosome and proteasome levels and dividing

the difference by the geometric mean of the respective standard deviations. The 95%

quantile of the standardized absolute differences was found to be 1.75 and was used
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Figure 7.1: Estimating the difference between up- and down- distributions using
proteasome- and ribosome- related genes as contrast sets. In C. elegans, S. cerevisiae,
and H. sapiens, I determined members of the ribosome by collecting all genes with a
GO annotation term that begins with “ribosome.” Similarly, I constructed a protea-
some gene set in each species from any gene annotations with a GO term beginning
with “proteasome.” I collected two-channel microarrays from databases and supple-
mentary material for a total of 334 C. elegans, 1049 S. cerevisiae, and 3883 H. sapiens
microarrays. Within each microarray I calculated the mean and standard deviation of
the set of ribosome genes and the set of proteasome genes. For each microarray I then
calculated the absolute value of the difference of the mean of ribosome and proteasome
expression, and divided by the geometric means of the standard deviations. Finally, I
plotted density estimates for each species.
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as the separation between the activated (or inhibited) distribution and the unaffected

distribution for simulating E-gene expression changes. To avoid detecting differences in

method performance due to fitting Gaussian parameters to simulated E-gene responses,

the parameters for the expression factors in the FG-NEM and uFG-NEM were set to

the same values used during simulation.

7.1.1 Calculating Network Structure Recovery Accuracy

I calculated the ability of FG-NEM and variants to recover artificially gen-

erated S-gene networks using simulated E-gene data was measured. I simulated and

predicted 500 networks, calculated the area under the precision-recall curve (AUC) for

each predicted network, and recorded the mean and standard deviation of these AUCs.

The FG-NEM and uFG-NEM (see §7.2) methods associate a likelihood score

to each interaction mode for each pair of S-genes. Predicted networks for each method

were produced by sorting the list of interactions by their mode preference scores and

then keeping interactions with scores above a threshold. A prediction of an interaction

between S-genes A and B was considered a true-positive if there was a direct or indirect

path between A and B in the generated network having the same direction. For exam-

ple, the prediction A→B would be considered correct if the path A→C→B was present

in the generated network and would not be considered correct if instead A→C←B was

present. Note that because the top-scoring interaction mode for any pair was chosen, it

is possible a method cannot reach a recall of 100% as an incorrect interaction will never

be considered correct even for the most relaxed threshold. Precision was calculated as
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the fraction of true-positives out of all predicted positives, while recall was calculated

as the fraction of true-positives out of all of gene pairs having a path in the generated

network.

The area under the precision-recall curve (AUC) was calculated for each pre-

dicted network learned from artificial data. Predicted interactions were associated with

their mode preference score, which was calculated by taking the log of the ratio of the

likelihood of the top-scoring mode to the likelihood of the second best scoring mode.

A precision-recall curve was then generated for a predicted network by ranking its in-

teractions by their mode preference score and calculating the precision and recall for a

series of score cutoffs.

7.1.2 Calculating Network Expansion Accuracy in Artificial Data

To evaluate the ability of a method to predict new genes involved in a network,

I performed a type of leave-one-out cross-validation. Each S-gene was held out in turn

by removing the simulated expression data associated with its knock-down and then

obtaining a LAR score for the S-gene in the recovered network. Each S-gene has

simulated expression changes under the other S-gene knock-downs and thus the held-

out S-gene can be scored like an E-gene. For a given pathway with a set of S-genes,

each gene A was iteratively removed from the list of S-genes and included as one of

the E-genes. In each iteration, the knockout data for A was deleted, resulting in the

data set X−A representing the full matrix of expression for the pathway in which the

columns (i.e. replicates) corresponding to the A knockout were removed. I used the
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percentiles of the LAR scores when comparing methods. The LAR percentile reflects

how likely a held-out S-gene is attached to the network relative to all of the E-genes

and is therefore more comparable across methods than using the LAR score directly.

The expression changes for the remaining S-genes were recorded in a reduced

dataset X−A. I used an artificial network of 32 genes from which eight S-genes were

randomly selected for simulated knock-down under which expression changes were sim-

ulated. I then ran FG-NEM and unsigned variants (see next section) on X−A, sorted

all effects by their LAR, and recorded rank of effect A divided by the total number of

effects. I also compared expansion performance to an unstructured method, Pavlidis’s

Template Matching (TM) [94]. This was performed on an augmented matrix [X−A : W ]

where W was a matrix of the same size as X−A drawn from the unaffected distribution.

TM compares a gene’s expression vector to an “idealized” vector, in this case a vector

with a value of 1 in entries that correspond to expression from a pathway knockdown,

X−A, and a 0 in entries that correspond to expression values from the control arrays, W .

To perform TM expansion, the Pearson correlation of each row in [X−A : W ] with the

idealized is calculated, each row is sorted by descending correlation, and the percentile

of the rank calculated.

7.2 Comparison to Unsigned FG-NEM variants and NEM

One of the key differences of the FG-NEM method is the addition of both

signed interactions between S-genes and the modeling of signed responses. To estimate
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Figure 7.2: Comparison of uFG-NEM and exhaustive NEM model search for structure
recovery. Each bar shows the mean and standard deviation of precision or recall for
S-gene links over 100 artificial networks with five S-genes. Networks were generated
with no inhibition and an average of 20 E-genes per S-gene. Expression was generated
for one replicate using standard deviation of 1 and a mean for the down distribution
of -1.75. Precision and recall for both uFG-NEM and exhaustive NEM search do not
differ significantly.

the importance of these parts of the model, I compare FG-NEM results to two unsigned

variants, FG-NEM AVT and uFG-NEM, to estimate the change in predictive power as

a function of the introduction of sign. In effect, both variants consider four interaction

modes: i) A > B; ii) B > A; iii) A 6= B; and A = B. For comparison purposes, a

predicted unsigned interaction was treated as activation. In the FG-NEM AVT variant,

FG-NEM is run on the absolute value of the data. This is a change of the data that

simulates what happens in the original implementation of NEM. In the uFG-NEM

method, I remove the component of FG-NEM which models repressive links between

S-genes and E-genes. In effect, this makes both the top row and the right column of

each interaction mode a disallowed region (see Figure 6.5).
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In addition to comparison of FG-NEM to uFG-NEM, I also compared uFG-

NEM to the original NEM algorithm on networks with five S-genes, the maximum

tractable network size. Figure 7.2 shows similar performance between uFG-NEM and

NEM on a set of 100 artificial networks. I conclude that the ability to operate on net-

works larger than five S-genes does not hamper FG-NEM’s ability to predict networks

of size five.

7.3 FG-NEM Structure Prediction Performance

I evaluated FG-NEM’s ability to recover artificial networks from simulated

data. Data was generated by propagating signals in networks containing simulated

knock-downs and then sampling expression data from activated, inhibited, or unaffected

expression change distributions (see §7.1). I focused on how the FG-NEM approach

increased recovery of networks that contain both activation and inhibition. Because

FG-NEMs explicitly incorporate inhibition, I hypothesized that they would recover

networks containing an appreciable amount of inhibition more accurately than an ap-

proach lacking separate modes for inhibition and activation. The uFG-NEM method,

as described in §7.2, implements this unsigned approach.

To make the comparison of FG-NEM to uFG-NEM fair, I measured network

recovery in two ways. First, I calculated a measure of structure recovery: a predicted

interaction was called correct if it matched an interaction (of either sign) in the simu-

lated network. In this case, whether the interaction was inhibitory or stimulatory was
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Figure 7.3: Influence of inhibition on network recovery. AUC (y-axis) plotted as a
function of the percent of inhibitory links (x-axis). Four replicate hybridizations were
used in all simulations. Points and error bars represent means and standard deviations
computed across 500 synthetically generated networks respectively. Lines in each plot
represent the performance of FG-NEM (red) and uFG-NEM run on the original data
(green) or on absolute-value-transformed (AVT) data (blue) for both structure recovery
(solid lines) and sign recovery (dotted lines).

ignored. Second, I measured sign recovery: a predicted interaction was recorded as

correct if it matched an interaction in the simulated network and had the matching

sign.

7.3.1 Varying Amount of Inhibition

I tested the ability of FG-NEM and uFG-NEM to recover the structure of net-

works simulated with varying fractions of inhibition, 0 ≤ λ ≤ 0.75, for both the amount

of inhibitory connections between S-genes and inhibitory attachments of E-genes. I

simulated and predicted 500 networks, calculated the area under the precision-recall

curve (AUC) for each predicted network (see §7.1.1), and recorded the mean and stan-
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dard deviation of these AUCs. As expected, when no inhibition was present, FG-NEM

and uFG-NEM were equivalent in terms of AUC when run on non-transformed data

(Figure 7.3). Surprisingly, FG-NEM run on the AVT data performs much worse than

FG-NEM even with no inhibition. This may be due to its interpretation of unaffected

E-gene changes as affected changes which adds noise to its estimates of hierarchical

nesting. As increasing amounts of inhibition is added into simulated networks, the per-

formance of uFG-NEM degrades precipitously for structure recovery, under performing

FG NEM by a margin of more than 0.20 units of AUC at the highest levels of simulated

inhibition (Figure 7.3). Even at moderate levels of inhibition, for example at the 15%

inhibition level, FG-NEM’s AUC is already significantly higher than uFG-NEM’s AUC.

I also calculated the AUC for recovering the correct sign of the interactions for the un-

signed models. In this case, unsigned interactions were interpreted to be activating

interactions. As expected, the AUC decreases quadratically since both the precision

and recall decrease linearly with increasing fraction of inhibition. Given these results,

I expect FG-NEMs to have significantly better performance on real genetic networks

where appreciable amounts of inhibition exist (see Figures 6.2).

I repeated the experiment of varying inhibition to match our expectations for

application to the cancer invasion network discussed subsequently in Chapter 9. In

the cancer invasion network the known S-genes were recovered in such a way that only

activating S-gene connections were identified, however, there is still a large degree of

inhibitory signaling to downstream effect genes. To simulate this situation, I created

networks containing only activating S-gene interactions but varied the proportion of
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Figure 7.4: Network recovery as a function of increasing inhibition in E-gene attach-
ment. In this experiment, only activating S-gene interactions were simulated while
varying the proportion of inhibited E-genes. AUC (y-axis) for each method’s ability
to recover synthetic networks is plotted as a function of the fraction of E-genes having
inhibitory attachments (x-axis). Points and error bars represent means and standard
deviations, respectively, computed across 100 synthetic networks. Lines in each plot
represent the performance of FG-NEM (red) and uFG-NEM run on the original data
(green) or on AVT data (blue) for structure recovery. Four replicates were used. Net-
work sizes were varied uniformly between 5 and 15 S-genes.
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Figure 7.5: Influence of replicates in network recovery. AUC (y-axis) plotted as a
function of varying numbers of microarray hybridization replicates (x-axis). Artificial
networks contained 40% inhibitory interactions.

inhibiting E-gene attachments. Even in this situation where all of the known S-genes

have activating interactions, FG-NEM’s performance begins to significantly surpass

uFG-NEM’s performance when 40-60% of the E-genes are connected with inhibitory

attachments (Figure 7.4). Thus, according to these simulations, even in cases where

activation predominates the S-gene interactions, incorporating sign in the model for

E-gene changes can lead to higher network recovery accuracies. I expect the signed

FG-NEM to also perform well for the invasion network where 40-60% of the expression

changes are consistent with inhibited E-gene attachments, as shown below.

7.3.2 Varying Number of Data Replicates

Uncertainty in microarray measurements is lessened by repeated hybridiza-

tion either using biological or technical replicates. However, replication is costly or
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not possible in many situations. Because the datasets analyzed in this paper have at

most two replicates, I was interested in testing the methods’ abilities to recover net-

works from data containing few replicates. I compared the performance of FG-NEM

and uFG-NEM for varying numbers of replicates (Figure 7.5). My results are consis-

tent with Markowetz et al.’s findings[84] that the unsigned approach has a positive

predictive value (PPV) about 0.1–0.15 higher when comparing four replicates to a sin-

gle replicate. In contrast, the new FG-NEM methods performs well even if a single

hybridization is available for each S-gene knock-down. With one to four replicates,

the performance of FG-NEM was significantly higher than uFG-NEM using either the

original or the AVT data. As the number of replicates increased to eight, the two

methods achieved comparable performance for FG-NEM run on the AVT data. In

a noisy data model, such as the one used in the synthetic data to model microarray

expression, the distribution for effects that has a positive mean still has a tail with

some degree of mass to the left of zero. The absolute value transformation confounds

this tail with the no-effect distribution. However, replicate samples from the distribu-

tion can quickly correct the confounding of the distributions, explaining the increased

performance of AVT with more replicates. To match the typical number of replicates

included in microarray studies, four replicates were used for the rest of the artificial

network experiments. At this number of replicates, FG-NEM significantly outperforms

both uFG-NEM and FG-NEM AVT variants.

104



20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FG−NEM
uFG−NEM
FG−NEM AVT

 
 
 

Percent of Network Known

A
U

C

Figure 7.6: Influence of incomplete pathway knowledge on network recovery. Expres-
sion data for a subset of S-genes was made available for network recovery. AUC (y-axis)
plotted as a function of the percent of S-genes having available data (x-axis). 40% inhi-
bition and four replicates were used. Solid lines indicate AUC of S-graph connectivity.
Dashed lines indicate AUC using both S-graph connectivity and sign.

7.3.3 Varying Fraction of Known Network

In practice, I expect studies of well-characterized pathways to include many

of the S-genes while studies of poorly characterized pathways will lack many of the

pathway’s S-genes. A full network of fifteen genes was generated and then a subset of

(k × 100)% of the pathway genes was randomly selected from it for use as the set of

S-genes. I tested the ability of both FG-NEMs and uFG-NEMs to recover the structure

of the hidden network from S-gene subsets of different sizes by varying k.

As expected, the performance of both methods increased as the proportion

of known S-genes was increased (Figure 7.6). Methods achieve their best performance

when at least half of the S-genes are known. Performance decreases slightly as more

of the network is known, as the prediction problem has more S-genes and therefore
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the hypothesis space is larger and the search problem becomes more difficult. This is

promising as I can expect the best possible performance of the methods even if I use

only half of the known underlying network. Conversely, all methods’ performances were

low when smaller proportions of known S-genes were used, especially at 20–33% (3–5

S-genes out of fifteen). Compared to more complete S-gene subsets, using fewer S-genes

introduces longer expected distances between any two S-genes, forcing the models to

infer a greater proportion of indirect interactions. In the simulated networks, longer

paths between S-genes will be associated with weaker signals compared to shorter

paths. Therefore, the expression changes have more chances to diverge from an idealized

nesting relationship compared to shorter paths. The FG-NEM remains more accurate

than the unsigned counterpart for known levels of 33% and higher. For example, when

33% of the network is known, the FG-NEM method achieves an average AUC of 0.72,

which is 50% higher than the AUC achieved by its unsigned counterpart.

7.4 FG-NEM Pathway Expansion Performance

As pathway expansion is one of the goals of my pathway inference methods,

I measured the ability of the FG-NEM method to expand the network to new genes

involved in the pathway compared to a correlation-based method I refer to as Tem-

plate Matching (TM) used by Irby et al. (2005)[62]. Briefly, Template Matching[94]

ranks genes based on the correlation of their expression profiles to an idealized pro-

file/template that reflects a phenotype of interest. TM has been used in several studies
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Figure 7.7: Accuracy of FG-NEM network expansion compared to Template Matching.
The percentile of an S-gene obtained from Template Matching was subtracted from
the percentile of the LAR score (see Methods) assigned by FG-NEM and uFG-NEM
obtained from the leave-one-out expansion test. A smoothed histogram for FG-NEM
(red), uFG-NEM run on the original data (green) and the AVT data (blue) was plotted
and shows the proportion of S-genes (y-axis) with a particular difference in method
percentile (x-axis). The underlying simulated network had 32 S-genes, eight S-genes
were used for network recovery, and twenty E-genes were attached to each S-gene.
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to identify genes with expression patterns that follow a series of phenotypes[5, 77]. I

found that FG-NEMs significantly outperform TM when used to expand artificial net-

works (Figure 7.7). TM was compared to FG-NEM using a leave-one-out test in which

knock-down data from one S-gene was removed from the dataset (see §7.1). I found

that both FG-NEM and uFG-NEM rank a held-out signaling gene higher than TM on

average. All three distributions of LAR percentile differences are shifted to the right

of zero. The uFG-NEM exhibits a bi-modal performance improvement over TM, but I

was unable to identify the source of this bi-modality. On average, FG-NEM predicts a

held-out S-gene 25.3 (+/-15) percentile units higher than TM.
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Chapter 8

Pathway Prediction and Expansion in

S. cerevisiae

Due to easy laboratory manipulation, S. cerevisiae is perhaps the best un-

derstood eukaryote in terms of gene function and pathways. In particular, there is a

large compendium expression profiles of gene knockout strains from Hughes et al.[57].

This compendium contains whole-genome expression profiles of 276 yeast gene-deletion

mutants and p-values for differential gene expression.

8.1 Expression Data and Gene Sets

In each deletion strain, gene expression changes with a p-value smaller than

0.05 were selected, and then labeled as activated or inhibited according to the sign of

their expression log-ratio. The p-values were converted to continuous expression values

using the method of Yeang et al. (2004)[129]. This method replaces a p-value with a
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value obtained by inverting a Chi-square distribution. The value can be interpreted

as a log-likelihood ratio reflecting the probability that an E-gene is expressed in the

affected distribution compared to a background distribution. Gene sets, as proxies

for pathways, were taken from Gene Ontology (GO)[4], KEGG[92] and Reactome[67]

information. There were 25 non-redundant pathways selected that had at least five

genes included as knock-outs in the knockout compendium. The largest pathway, chro-

mosome organization and biogenesis, contained 45 S-genes. On a 2.83 GHz processor,

factor graph inference using 5046 E-genes took a total of 1828 seconds. A pathway

with 12 genes, such as nitrogen compound metabolism, took 38 seconds for network

inference.

8.2 Pathway Expansion Performance

The accuracy of FG-NEMs for expanding each pathway to include new genes

was measured. The likelihood of attachment ratio (LAR) score for each gene in the

genome was calculated and the area under the precision-recall curve (AUC) was com-

puted (see §7.1.2 for details). For each pathway, an AUC ratio was then calculated

by dividing each method’s AUC by the AUC calculated from randomly guessing E-

genes for attachment to the network. Pathways sharing 25% or more of their genes

with another pathway of higher AUC were ignored. Five non-redundant pathways were

found that had AUCs significantly better than random guessing for at least one of the

methods. Also included in the comparison is a sFG-NEM method, that includes priors
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Figure 8.1: Yeast Pathway Expansion Precision/Recall Comparison. Each method’s
ability to expand a pathway was compared. Thick lines indicate mean precision and
shaded regions represent standard error of mean calculated over the networks with the
five highest AUCS from any of the tested methods.

on FG-NEM structures from high-throughput data. The details of this method are

provided in the next section, §8.3.

While the precision of FG-NEM over uFG-NEM was not significant at any

specific recall range, its overall higher precision across a broad range of recalls reflects a

systematic improvement. Figure 8.1 shows the precision-recall curves averaged across

these five pathways. The AUC ratios for the selected pathways are shown in Figure 8.2

and are sorted by the AUC achieved under the best-performing method.

Except for ribosome biogenesis, FG-NEM performed comparably or better

than uFG-NEMs and TM (Figure 8.2 and Table 8.1). For sexual reproduction, ion

homeostasis, and cell wall, FG-NEM outperformed the other methods by the largest

margins, outperforming TM by a ratio of 4.17, 3.98, and 2.64 respectively. The signaling

networks of both sexual reproduction and ion homeostasis consist of several inhibitory
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Figure 8.2: Yeast Expansion Performance AUC Comparison. Networks were predicted
for a non-redundant set of GO categories containing four or more S-genes in the Hughes
et al. (2000) compendium and used to predict held-out genes from the same category.
The area under the curve (AUC) for each pathway was calculated for each method.
AUC ratios (y-axis) were calculated for each method relative to the lowest AUC. Predic-
tion methods that are significantly better than the lowest performing method, excluding
random, at the 0.05 level (*) and 0.01 level (**) were determined by a proportions test
on the top 30 predictions from each method.
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Pathway sFG-NEM FG-NEM uFG-NEM Template

ribosome biogenesis 0.131 0.131 0.089 0.194
sexual reproduction 0.113 0.123 0.085 0.029
nitrogen compound metabolism 0.127 0.124 0.130 0.048
ion homeostasis 0.102 0.102 0.027 0.063
translation 0.087 0.087 0.088 0.084
cell wall organization and biogenesis 0.092 0.092 0.040 0.062
chromosome organization and biogenesis 0.069 0.069 0.081 0.075
nucleotide metabolism 0.056 0.056 0.033 0.029
vesicle-mediated transport 0.047 0.047 0.055 0.059
lipid metabolism 0.055 0.055 0.052 0.051
carbohydrate metabolism 0.049 0.049 0.038 0.037
establishment of protein localization 0.072 0.072 0.077 0.049
phosphorus metabolism 0.046 0.046 0.035 0.033
proteolysis 0.053 0.053 0.040 0.039
cytoskeleton organization and biogenesis 0.034 0.034 0.040 0.043
cellular respiration 0.017 0.017 0.013 0.016
response to osmotic stress 0.015 0.015 0.012 0.014
protein complex assembly 0.018 0.018 0.020 0.018
filamentous growth 0.015 0.015 0.015 0.015
positive regulation of transcription 0.017 0.017 0.018 0.016
interphase 0.019 0.018 0.020 0.018
glycoprotein metabolism 0.014 0.013 0.014 0.014
protein folding 0.014 0.014 0.015 0.013
regulation of enzyme activity 0.014 0.014 0.016 0.010
response to temperature stimulus 0.006 0.006 0.007 0.005

Table 8.1: Pathway expansion AUC on a yeast gene-deletion compendium. Gene On-
tology categories are sorted in descending order according to their maximum expansion
performance in any of the methods.

interactions[22, 25], consistent with FG-NEM’s ability to capture negative as well as

positive regulatory interactions. TM may perform the best on ribosome biogenesis

because the proteins involved in ribosome assembly are all tightly co-regulated and

their knock-outs lead to severe (and uninformative) effects. The signatures of expression

changes for the ribosome biogenesis genes are not distinct from arbitrary genes because

knocking out any of the ribosome biogenesis genes leads to drastic fitness defects in

yeast and a concomitant alteration in gene expression to many genes in the genome.
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8.3 Physical Structure Priors

The factor graph approach allows prior information to be incorporated. I

tested a supervised variant of FG-NEMs (sFG-NEM) in which additional factors were

incorporated to reward models that included known interactions. Three classes of

physical data were downloaded for use as interaction priors: protein-DNA interactions,

phosphorylation target data, and protein-protein interactions (PPI). Protein-DNA in-

teractions with a p-value less than 0.001 were selected from the study of Lee, et al.

(2002)[75]. Data describing kinase targets was taken from the study of Ptacek, et al.

(2005)[99]. PPI data was downloaded from the BioGRID database[15] on July 30, 2008.

For each gene set under study, I selected any interaction between S-genes in that cate-

gory, resulting in 27 Protein-DNA interactions, 4 phosphorylation interactions, and 64

PPIs for the gene sets discussed in this chapter. For each unique physical interaction,

I added an additional factor to the corresponding interaction variable to increase the

likelihood of consistent interaction modes and decrease the likelihood of inconsistent

modes.

I incorporated physical data as a prior on the interaction modes of an inter-

action variable in the factor graph. Some possible interaction modes are compatible

with the evidence and some are not. I denote the set of interaction modes compati-

ble with the evidence I+ and the set that is incompatible I−. For protein-DNA and

phosphorylation data, where the protein of gene A binds the DNA of gene B or phos-

phorylates the product of gene B, I+
AB = {→,a} and I−AB = {`, 6=,=,←}. For PPI
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data, I+
AB = {→,a,`,=,←} and I−AB = {6=}. If there is no interaction data for A

and B, then all interaction modes are in I+
AB. I then define the evidence priors as

ρAB(φAB) = 1 if φAB ∈ I+
AB and p = 10−7 otherwise. Varying the parameter p did not

produce significantly different results.

Incorporating physical interaction priors showed little effect on network ex-

pansion performance. For most of the pathways, the performance of sFG-NEMs was

indistinguishable from its unsupervised counterpart. A slight improvement was seen for

the nitrogen metabolism pathway. Incorporation of structural priors adds activation

from GLN3 to YEA4, and from ARG80 to ARG5,6, and slightly boosts the predictive

power of the network. Thus, FG-NEM can usually identify new pathway genes in the

unsupervised setting as well as when known interactions are provided.

Interestingly, the largest change in performance resulting from the use of prior

information was a small drop observed for predicting genes involved in the sexual

reproduction pathway. We investigated this decrease and found that using protein-

DNA priors forced the placement of a transcription factor STE12 to the top of the

pathway, whereas placement toward the bottom seemed to better fit the expression

changes. Consequently, FG-NEM ranks the sexual reproduction E-genes higher than

sFG-NEM.
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Figure 8.3: Compatibility of high-throughput physical evidence and predicted S-gene
interactions. Each point is the margin of compatibility (MOC, see Eq. (8.1)) of a pre-
dicted genetic interaction to high-throughput physical interaction data when physical
interaction evidence was used (y-axis) and when it was not used (x-axis). Coloring in-
dicates two-dimensional density estimation of points. Inset shows detail of the highest
density region.

8.4 Pathway Structure Prediction

On average, physical interaction priors increase the compatibility of FG-NEM

predictions with high-throughput physical data. A leave-one-out analysis was used to

test the ability of physical interaction data to improve pair-wise interaction predictions.

To compare improvement in network structure prediction, I calculated the margin of

compatibility (MOC) to reflect how well predicted interactions match held-out physical

evidence.

Given the inferred log-likelihoods of each interaction mode LLAB(φAB), I

define the compatible log-likelihood as LL+
AB = max

I∈I+AB

LLAB(I) and the incompatible

log-likelihood as LL−AB = max
I∈I−AB

LLAB(I). To compare pair-wise interaction predictions
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with physical evidence I defined the margin of compatibility (MOC) to be the difference

in the log-likelihood of the most-likely interaction mode compatible with the evidence,

LL+
AB, relative to the most-likely mode incompatible with the evidence, LL−AB:

MOCAB =
LL+

AB − LL
−
AB

0.5
(
LL+

AB + LL−AB
) . (8.1)

Negative MOCs are assigned to predicted interactions that are incompatible with the

physical evidence, while positive MOCs assigned to compatible predictions. For each

held-out physical interaction, a network was computed using all other physical interac-

tion data. Figure 8.3 shows the MOC of using priors plotted against the MOC without

priors.

Of the 163 physical interactions, 104 (63%) have higher while 43 (26%) have

lower MOC in sFG-NEM than FG-NEM. Of these 43, 33 have positive MOCs for

both approaches (i.e. both agree with the physical evidence). Notably, of the 93

that achieved higher compatibilities in sFG-NEM, 38 (23%) became compatible only

when the physical evidence was included. One example is the interaction between

CDC42 and FAR1 in the sexual reproduction pathway. FAR1 acts downstream of

CDC42 in the pheromone response signal cascade. The FAR1 gene deletion shows

little expression change and is not placed downstream of CDC42 even though CDC42

is placed at the top of the signaling cascade by FG-NEM. With the inclusion of other

structural priors, FAR1 is correctly placed downstream of CDC42. Thus, incorporating

known interactions, even from possibly noisy high-throughput sources, can increase the

likelihood of finding other interactions. However, the caveat is that such information
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Figure 8.4: Predicted S-gene networks for the Ion Homeostasis pathway. Shown are
predicted networks from the FG-NEM method (Signed) and the uFG-NEM method
(Unsigned). Arrows indicate activating interactions and tees indicate inhibiting inter-
actions. The absence of a link between a pair of S-genes indicates the most likely mode
for the pair was the non-interaction mode. Equivalence interactions are indicated with
double lines and S-genes connected by equivalence are grouped into dashed ovals.

may force a poorer fit to the observed expression data which could decrease the accuracy

of frontier expansion.

8.5 Predicted inhibition in ion homeostasis pathway

FG-NEMs achieved significant improvement over the unsigned variant on the

ion homeostasis pathway. To gain insights into the structural predictions underlying

the difference in performance of the methods, I compared the predicted S-gene networks

of the FG-NEM and uFG-NEM methods for this pathway (Figure 8.4). In budding

yeast, calcineurin regulates gene expression and ion transport in response to calcium
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signals by dephosphorylating the transcription factor Crz1p, thus allowing Crz1p to

rapidly translocate from the cytosol to the nucleus[110]. Conversely, the casein kinase

homolog Hrr25p binds to and phosphorylates Crz1p to functionally antagonize cal-

cineurin signaling in yeast[69]. FG-NEMs predicted an ion homeostasis gene network

that is comprised of a number of biologically relevant links where CNA1 stimulates

CNB1, the casein kinase 2 subunit genes CKA2 and CKB2 are equivalent and repress

CNB1, and the vacuolar proton pump subunits CUP5 and VMA8 are likewise equiva-

lent and repress CNB1.

Both the FG-NEM and uFG-NEM correctly predicted the equivalence of

CKA2 and CKB2 which together form a complex. Of the top fifteen frontier genes

predicted by FG-NEM, eight are annotated by GO as involved in ion homeostasis

(Table 8.2), FRE2 is involved in ion transport, YGL039W is an oxidoreductase, and

ARO9 is involved in amino acid catabolism. In contrast, only one of the top uFG-NEM

frontier genes (Table 8.3), GRX4, is annotated by GO as involved in ion homeostasis.

Examining the top 20 true positives predicted to be attached by FG-NEM, 19 were

found to be predicted to be repressed by their S-gene. These true positives were not

predicted to be attached to the network by uFG-NEM. Thus, the inability to make use

of the explicit depression of E-genes may contribute to the poorer performance of the

unsigned method.
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ORF GO Ann. LAR NAME Truncated description

YKL220C - 17.66 FRE2 Ferric reductase and cupric reductase
YGL039W - 14.85 Oxidoreductase
YGR043C - 14.17 NQM1 Protein of unknown function
YDR270W + 13.84 CCC2 Cu(+2)-transporting P-type ATPase
YOR381W + 13.80 FRE3 Ferric reductase
YHL040C + 13.74 ARN1 Transporter, responsible for uptake of iron
YER145C + 12.12 FTR1 High affinity iron permease
YLR205C + 12.01 HMX1 ER localized, heme-binding peroxidase

YMR090W - 11.44 Putative protein of unknown function
YHR137W - 11.17 ARO9 Aromatic aminotransferase II
YEL065W + 11.14 SIT1 Ferrioxamine B transporter
YOR384W - 10.94 FRE5 Putative ferric reductase
YOR338W - 10.62 Putative protein of unknown function
YLR136C + 10.55 TIS11 mRNA-binding protein
YOL158C + 10.39 ENB1 Endosomal ferric enterobactin transporter

Table 8.2: FG-NEM Ion Homeostasis pathway expansion frontier. The table is sorted
by decreasing natural log of likelihood attachment ratio. The symbol + in the GO
Ann. column indicates that the E-gene is annotated as a member of ion homeostasis
by Gene Ontology.

ORF GO Ann. NAME Truncated description

YGL009C - 12.08 LEU1 Isopropylmalate isomerase
YER174C + 9.66 GRX4 Glutathione-dependent oxidoreductase
YMR120C - 8.55 ADE17 Enzyme of ’de novo’ purine biosynthesis
YGR286C - 7.52 BIO2 Biotin synthase
YGR234W - 7.27 YHB1 Nitric oxide oxidoreductase
YNR074C - 6.87 AIF1 Mitochondrial cell death effector
YOR356W - 6.37 Mitochondrial protein
YJR048W - 5.93 CYC1 Cytochrome c, isoform 1
YIL015W - 5.73 BAR1 Aspartyl protease
YDL171C - 5.46 GLT1 NAD(+)-dependent glutamate synthase
YER001W - 4.96 MNN1 Alpha-1,3-mannosyltransferase
YPL274W - 4.78 SAM3 High-affinity S-adenosylmethionine permease
YEL071W - 4.35 DLD3 D-lactate dehydrogenase
YLR130C - 4.20 ZRT2 Low-affinity zinc transporter
YHR216W - 4.04 IMD2 Inosine monophosphate dehydrogenase

Table 8.3: uFG-NEM Ion Homeostasis pathway expansion frontier. The table is sorted
by decreasing natural log of the likelihood attachment ratio. The symbol + in the GO
Ann. column indicates that the E-gene is annotated as a member of ion homeostasis
by Gene Ontology.
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Chapter 9

Cancer Invasion Pathway Prediction

and Expansion

Carcinogenesis involves a host of cell-cell communication breakdowns that

include the loss of contact inhibition, an increased potential to proliferate, and the

ability to invade and spread into foreign tissue. The molecular events involved in this

transformation are still poorly understood. New systematic methods are needed to

infer the key events responsible for these disease processes. The ability to measure gene

expression changes for the entire genome in the presence of molecular perturbations,

such as specific gene knock-downs, provides a new opportunity to infer gene networks

in a data-driven manner.

Towards this end I applied the FG-NEM approach to a human colon cancer

invasiveness network genes by Irby et al. (2005) [62]. In this work, the authors identified

several “tiers” of genes implicated in the invasion process under the control of SRC
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kinase. Genes were included in a tier if their knock-downs were found to produce

a significant drop in the invasive potential of HT29 colon cancer cells as defined by

invasion through Matrigel. To identify additional genes involved in the invasion process,

the authors measured gene expression under an RNA interference knock-down of each

gene in the tier. Genes whose expression was lower in the knock-downs producing loss-

of-invasiveness, and higher in knock-downs that did not produce loss-of-invasiveness,

were considered candidates for inclusion in the next tier. In this fashion, each tier

was formed by knocking-down each candidate gene and assaying for loss-of-invasion in

Matrigel. In this chapter I describe using FG-NEM on the second tier genes to discover

the third tier, and the network resulting from the third tier.

9.1 Previous Data and Methods

I applied the FG-NEM to the five S-genes from the second tier of Irby et

al. (2005) [62]. These five human genes are cytokeratin 20 (KRT20), transcription

factor Dp-1 (TFDP1), DEAH (Asp-Glu-Ala-His) box polypeptide 32 (DHX32), ribo-

somal protein L32 (RPL32), and glutaminase (GLS). Knock-down of each second-tier

S-gene has been demonstrated to significantly reduce the invasion phenotype of HT29

colon cancer cells. KRT20 has historically served as a diagnostic marker for colorectal

carcinoma [90], whereas high expression of ribosomal protein L32, glutaminase, and

DEAD/H box polypeptides has been associated with various cancers and metastatic

lesions [16, 135]. For this study, S-genes from the first tier were excluded as the expres-
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sion profiles from the knock-down experiments were collected on a different microarray

platform and therefore cross-platform normalization issues could potentially impact

the results. The Expression Factor parameters were estimated from genes found to

be up- or down-regulated by running the Statistical Analysis of Microarrays algorithm

(SAM) [116], with a False Discovery Rate of 1%, on gene expression data collected on

a panel of knock-downs. Using the differentially expressed genes yielded an estimate

of 1.75 for the mean log2 ratio of the inhibited E-gene distribution and -1.75 for the

activated E-gene distribution and standard deviations of 0.5. A mixture of Gaussians

with these parameters was used for Pr (Xe|Ye) (see §6.3). Several of these knock-downs

led to loss-of-invasiveness while others produced invasive growth in the Matrigel assay

as reported by Irby et al. (2005). The hybridization data and associated normalization

information can be accessed from the Gene Expression Omnibus (GEO) database [6]

under the series accession number GSE11848 and associated platform accession number

GPL6978. A subset of this data containing the SAM-selected E-genes can be obtained

from Dataset S1 in the supplementary materials from Vaske et al. (2009) [119].

9.2 Initial Network and Frontier

I selected E-genes that demonstrate a robust and significant effect under at

least two of the knock-downs. Specifically, I choose only genes whose log2 ratios differ

by less than 0.5 in replicate arrays and had an absolute log2 expression change at least

equal to the mean absolute level of the activated distribution (1.75) in at least two
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Figure 9.1: Expression changes of selected E-genes following targeted S-gene knock-
downs in HT29 colon cancer cells. Gene expression was measured in HT29 cells treated
with a shRNA specifically targeting an S-gene relative to cells treated with a scrambled
control shRNA (Irby et al. 2005)[62]. Colors indicate putatively inhibited E-genes with
up-regulated levels relative to control (red), activated E-genes with down-regulated
levels relative to control (green), and unaffected E-genes with expression levels not
significantly different from control (black). Genes were sorted by their attachment
point and then by their LAR scores.
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arrays. Using these criteria, I identified 185 E-genes to use for model inference. Fig-

ure 9.1 shows the expression data of these E-genes plotted in order of their predicted

attachment points as identified by the highest scoring network model. For the most

part, E-gene expression changes moved in the same direction following knock-down

across the panel of five S-genes, indicating the presence of mostly stimulatory links

among the S-genes. This is in contrast to Figure 6.3, where expression changes of a

single E-gene move in the opposite direction following knock-down of S-genes connected

by an inhibitory link. The absence of inhibitory links among S-genes is expected since,

according to the selection criteria of previous studies, all of the S-genes were found

previously to act in the same direction (invasion promotion). The method does find

many inhibitory links to E-genes, which dramatically increases the fit of the model on

the data points. These predicted attachment signs provide information about how an

E-gene’s involvement in the invasion process can be tested in follow-up experiments.

The model predicts that invasion can be suppressed by knocking down genes connected

by stimulatory attachments or by over-expressing genes connected by inhibitory attach-

ments.

To calculate the significance of S-gene interactions predicted for the inva-

siveness network, I permuted the second tier data 1000 times by shuffling the data

within microarray hybridizations and then calculating the maximum likelihood inter-

action mode for each S-gene pair under every data permutation. An empirical P value

was calculated independently for each S-gene pair as the fraction of likelihoods from

permuted runs that exceed the likelihood of the non-permuted run. To calculate the
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DHX32

GLS

TFDP1

**
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RPL32KRT20

Figure 9.2: Cancer invasion network predicted by FG-NEM. For each pair of S-genes,
the most likely interaction mode is shown. The same conventions used for illustrating
interactions predicted for the yeast networks were used here. Some interactions were
found to be significant at the 0.05 level (*) or 0.01 level (**) using a permutation test
(see Methods). KRT20 and RPL32 were predicted to be equivalent and are therefore
grouped together in a dashed oval.
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significance of E-gene attachments, I permuted the data 1000 times by shuffling within

gene rows, then predicting a network and calculating each E-gene’s LAR. An empirical

P value for E-gene attachment was calculated independently for each E-gene as the

fraction of LARs for that gene that exceed the LAR on the non-permuted data.

FG-NEM recovered the network shown in Figure 9.2. KRT20 and RPL32

are predicted to be equivalent. Also, the model predicts TFDP1 and DHX32 are

downstream of KRT20 and RPL32. The equivalent interaction of KRT20 and RPL32

received significantly high likelihoods (p < 0.001) as well as a strong excitatory down-

stream connection to TFDP1 (p < 0.001). There is a significant excitatory connection

between KRT20/RPL32 and DHX32 based on one series of knock-down experiments

specifically targeting KRT20 (p = 0.006), although a second knock-down experiment

(using a silencing RNA differing from the first series that targets a different region of

the KRT20 mRNA) resulted in a weaker connection (p = 0.534). Consequently, one

could designate this link as deserving of follow-up functional studies (e.g. promoter

analysis or chromatin immunoprecipitation). Though GLS is connected to the net-

work, the likelihood of interaction was not strong enough to be significant. Hence, the

GLS connection may require future knock-downs of additional S-genes coupled with

gene expression profiling in order to resolve its tentative connection.

The FG-NEM model predicts that TFDP1 is at the bottom of the signal-

ing cascade, which may reflect its role as part of the E2F transcriptional complex in

targeting the expression of downstream genes that promote cell proliferation and inva-

sion [60, 136]. The ribosomal subunit, RPL32 is curiously placed upstream of the DP1
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transcription factor and at an equivalent level with the structural molecule KRT20.

Aberrant expression of ribosomal proteins has been noted in a variety of cancers, al-

though the molecular consequence of these expression changes is unknown [91]. It has

been postulated that ribosomal proteins may play an important extraribosomal role

(i.e. beyond translation) in the oncogenic transformation process [91].

Because the number of S-genes in the second tier is small, I compared the

heuristic pair-wise search employed by FG-NEM to a random model search. If the

heuristic approach is reasonable, it should identify network models that are among the

highest scoring models identified by random sampling in less time. I generated 1000

random networks among the five second-tier genes. For each network, I calculated the

data likelihood using message passing. Out of the 1000 randomly enumerated networks,

the recovered network for the second-tier genes had a likelihood higher than 997 of the

random networks. Interestingly, all three of the random networks with higher scores

had identical structures to the network recovered by FG-NEM except that all three

networks differed in their attachment of DHX32 and GLS. However, FG-NEM ran in

only 1.96s whereas it took 232s to score the random models. This result demonstrates

that the pair-wise heuristic search employed by FG NEM successfully identifies high-

scoring networks in the space of all networks. While I need to test the trend for

increasing network sizes, these results are promising for scaling up to larger networks

in which random sampling will not be feasible.
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9.3 Frontier Verification

I used the highest-scoring model recovered by FG-NEM to search for addi-

tional genes involved in colon cancer invasiveness by sorting each gene by its LAR

score (see §6.6). I found 19 positive and 31 negative attachments with significant

probabilities. Significance of the attachments was assessed by permuting each E-gene’s

observations, relearning a FG-NEM network, and computing its LAR score to construct

an empirical null distribution of LARs. The E-genes with the highest attachment prob-

abilities and positive LAR scores found to be significant via permutation testing are

shown in Table 9.1.

Many of the genes in Table 9.1 have roles consistent with cancer cell invasion.

For example, three E-genes encode proteases, including the metalloproteases ADAM9

and ADAM19. The metalloproteases represent a class of transmembrane proteins that

are known facilitators of cell migration and invasion by proteolytic cleavage of extra-

cellular matrix components [10]. Interestingly, ADAM21 is included among the first

tier genes of Irby et al. (2005). This demonstrates that FG-NEM is able to identify

two additional family members of this first tier gene even though it was not included

in the S-gene set used in network learning. Glial fibrillary acid protein (GFAP) and

Testes-specific protease 50 (TSP50) are also included in Table 9.1. GFAP is known to

interact with the oncogenic tyrosine kinase SRC [102] and involved in astrocyte tumor

invasiveness [19], while TSP50 has been shown to be differentially regulated in both

breast and testicular cancer [127, 134]. Thus, FG NEMs predict that an expanded set
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of proteases may play a role in the colon cancer invasion process. Also included among

the set of genes in our expanded invasion network is a second keratin family member,

keratin 13 (KRT13), which is consistent with the previous identification of KRT20 in

the second tier and may reflect a structural underpinning needed for invasion. Several

of the genes in Table 9.1 represent novel connections of genes to the colon cancer inva-

siveness pathway. For example STK24, is a highly conserved protein whose homolog in

S. cerevisiae, STE20, is involved in signal transduction of pseudo-hyphal growth [24].

It is intriguing to consider the possibility that part of the invasiveness pathway could

be due in part to the aberrant regulation of an ancient cell migration process that dates

back to single-cellular organisms.

The E-genes with positive LAR scores constitute the network “frontier” of

the cancer invasiveness pathway in that they are predicted to directly interact with

the second-tier genes. From among the 38 genes with positive and significant LAR

scores, two were arbitrary selected to test for a loss-of-invasiveness phenotype in HT29

cells as defined by invasion in Matrigel. In collaboration with Norm Lee’s laboratory

at George Washington University we selected CAPN12 and expressed sequence tag

AA099748 from Table 9.1 for gene knock-down experiments. CAPN12 is a member of

the calpain gene family, which has been shown to have fibrillin activity. Genbank EST

accession AA099748 aligns to the genome 3’ to the gene CHMP4C, along with the EST

AW440175, both from cancer tissues. Additionally, the amino acid translations of these

ESTs align to the N-terminus of CHMP4C with 48% identity. The C-terminal tail of

CHMP4C was recently shown [87] to be bound by the apoptosis inhibitor PDCD6IP,
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LARa E-gene S-gene E-gene Description

18.79 CHORDC1b GLS cysteine and histidine-rich domain (CHORD)-containing 1
11.35 RNF32 GLS ring finger protein 32
10.93 TSP50 TFDP1 testes-specific protease 50

10.02 HS3ST1d KRT20 heparan sulfate (glucosamine) 3-O-sulfotransferase 1
6.85 CHMP4Cc TFDP1 chromatin modifying protein 4C

6.76 ADAM19b KRT20 ADAM metallopeptidase domain 19 (meltrin beta)
6.34 CYP3A43 KRT20 cytochrome P450, family 3, subfamily A, polypeptide 43

5.97 SPTLC3b TFDP1 serine palmitoyltransferase, long chain base subunit 3

5.25 PLEKHM3b KRT20 pleckstrin homology domain containing, family M, member 3
4.92 KRT13 TFDP1 keratin 13
4.28 CAPN12 KRT20 calpain 12

3.87 C1orf34b KRT20 hypothetical protein LOC22996
3.54 ZNF350 KRT20 zinc finger protein 350
3.53 ADAM9 TFDP1 ADAM metallopeptidase domain 9 (meltrin gamma)

2.75 SLC2A1b KRT20 solute carrier fam. 2 (facilitated glucose transporter), member 1
2.38 TCTEX1D1 TFDP1 Tctex1 domain containing 1
2.23 STK24 KRT20 serine/threonine kinase 24 (STE20 homolog, yeast)
2.05 DDX58 KRT20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58
2.01 GFAP KRT20 glial fibrillary acidic protein

Table 9.1: Top frontier genes for colon cancer invasiveness ranked by LAR score (see
Methods) and filtered for significance as determined by data permutation test. Note
that measurements from the microarray expression data are of EST probes, and the
E-gene column lists the gene that the EST maps to, or is closest to if the EST has not
been associated with a gene model in the UCSC genome browser.
aNatural logarithm of likelihood of attachment score. bEST is inside an intron of this gene. cEST is
on the 3’ end of this gene. dEST is on the 5’ end of this gene.
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Figure 9.3: Matrigel Invasion Assay in HT29 Colon Cancer Cells. Genes predicted to be
significantly attached to the network, CAPN12 and expressed sequence tag AA099748,
resulted in a loss of the invasiveness phenotype when knocked-down by RNA inter-
ference. Genes not significantly attached to the network, MYO1G, BMPR1A, and
COLEC12, did not result in significant loss of the invasive phenotype. A scrambled
non-sense sequence also served as a negative control and did not result in a loss of
HT29 cell invasiveness. Gene knock-downs in HT29 cells were validated by quantita-
tive real time RT-PCR where mRNA levels of targeted genes were decreased by 70-80%
compared to scrambled control shRNA-treated cells (data not shown). Data shown are
the mean and S.E. of five independent experiments performed in quadruplicate. Treat-
ments significantly different from scrambled control shRNA-treated cells (P < 0.05) by
ANOVA and post hoc Tukey test are indicated by (*).

suggesting that the cancer-specific splice form of CHMP4C may have altered binding

behavior with PDC6IP. PDC6IP also has been implicated in a broad array of membrane

associated processes, including cell adhesion [104]. As negative controls, our collabo-

rators performed knock-down experiments for three E-genes that had low attachment

probabilities, namely MYO1G, BMPR1A and COLEC12. As correctly predicted by

FG-NEM, both E-genes with high LAR scores produced significant loss of invasion

while all three E-genes with low LAR scores did not lead to loss-of-invasion in the

Matrigel assay (Figure 9.3).
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9.4 Expanded Cancer Invasion Network

After the testing the positive and negative controls shown in Figure 9.3, our

collaborators found an additional 12 genes from the cancer invasion frontier to be

essential for invasion by a Matrigel assay. Expression profiles were generated from each

knockdown, on a microarray platform that consists of a superset of the probes on the

previous two platforms. The parameters for E-gene expression distributions were as

in the previous tier: means were set to -1.75 and 1.75 for the positive and negative

distributions, and all s.d. were 0.5.

In addition to the E-genes selected previously for network inference, E-gene

expression spots were chosen from the expression data new to this study. A spot was

selected if the means of expression under a knockdown varied significantly more than the

expression means of each replicate number. Due to the large number of microarrays, the

were necessarily run over a long period of time, and due to experimental artifact where

arrays with similar replicate number will co-vary. For each spot on the microarray, the

F-statistic F = MSTRNAi/MSTReplicate, where MSTRNAi is the mean sum of squares

among the RNAi treatment grouping and MSTReplicate is the mean sum of squares

grouping according to the replicate number. E-gene spots significant at the 0.05 level

from an F-distribution with df=(13,2) were included for network inference.

We predicted a signaling network between the invasiveness genes using FG-

NEM (see Methods) on 1114 E-genes. The resulting is fully connected, and spans all

three tiers of S-gene discovery, using results from three different microarray platforms.
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Figure 9.4: Inferred S-gene network and Frontier. Nodes represent S-genes (ovals),
E-genes (gray boxes), and Gene Ontology categories (white boxes). Arrows indicate
activation, and tees indicate repression. Circular line endings indicate GO set enrich-
ment among both activated and inhibited E-genes.

I assessed the bootstrap confidence of inferred network features. For each of 1000

repetitions, we generated a sampled expression matrix of the same size as the original

by selecting rows from the original expression matrix with replacement and inferred a

signaling network. For any predicted interaction from the original data, the bootstrap

confidence was calculated as the fraction of predictions from sampled matrices that had

the same interaction mode as the original predicted interaction.

Each tier of knockdown data was performed on a different microarray plat-

form, at a different time, and by a different technician. There is therefore a great deal
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of tier-specific signal which confounds attempts to unify the network. Though I was

able to eliminate most of this effect for tiers one and three, tier two remains largely

disconnected from the rest of the network. I believe that this is due largely to platform

specific effects, and that if the tier two knockdowns were replicated on the same plat-

form as the other knockdowns, the tier two genes would be more integrated with the

rest of the inferred invasion network.

The predicted signaling network has three entry points: SCN5A, STK24,

and KRT20/RPL32. I characterize the network into four topological and functional

domains, shown in Figure 9.4. Domain I consists of integral membrane proteins and

proteases, and is upstream of all other network domains. Domain II appears to regulate

Wnt signaling. Domain III exhibits calcium dependent signaling and protease behavior.

Domain IV is downstream of domains I and II, has an independent signaling input from

STK24, and contains genes related to secretion.

9.4.1 Membrane/protease domain

The predicted invasion network in the neighborhood of the SCN5A entry

point is enriched for membrane proteins, and in particular plasma membrane proteins.

On this branch, SCN5A, ADAM21, CD53, and ADAM9 are known to be membrane

proteins, and only UBE2L6 is not. The other membrane-associated proteins, ODZ3

and SEC24D are located together at the end of Domain IV and appear to be related

to secretion.
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9.4.2 Calcium domain

The branch from NARG1 to CCR9 and CAPN12 consists of a putative calcium

regulatory channel. Calcium gradients are observed in motile cells, and many essential

cell motility proteins in the leading edge require calcium-activation. In addition, cell

motility on the leading edge is characterized by flickers of temporarily elevated calcium

concentrations [123]. One source of these flickers has been found to be a membrane-

tension-gated ion channel. NARG1 is regulated by NMDA receptors, including GRIN1,

which admits CA2+ ions into cell and is gated by glutamate. In other cell types, GRIN1

functionally controls lymphocyte activation and are thought to be critical in synaptic

plasticity, indicating that GRIN1 may be another neural protein involved in cancer,

and which regulates NARG1. We predict NARG1 to signal to the chemokine receptor

CCR9, which is known to elevate cytosolic calcium levels when activated by CCL25.

The gene product of CAPN12, calpain 12, is a calcium activated protease, which we

predict to be regulated by CCR9. Though calpain 12 is not implicated in invasion,

other members of the calpain family have been found to regulate integrin-cytoskeletal

interactions [PMID: 8999848] and synaptic plasticity [17].

9.4.3 Secretory/trafficking domain

The network branch from STK24 and GNAI3 down to SEC24D consist of

signaling proteins and kinases (STK24, GNAI3, EIF2AK2, ODZ), a member of the

ESCRT-III complex which is involved in endcytosis and trafficking of multivessicular

bodies (CHMP4C), an exocytosis regulator (SCRN3) [122], and a protein involved in
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Figure 9.5: S-gene interaction confidence. Each pixel in the heatmap corresponds to
an S-gene interaction’s bootstrap confidence. For each interaction, the parent S-gene
is labeled to the rich, and the child S-gene is labeled to the bottom. Note that though
NEM include all transitive interaction, they are not displayed in (B) for simplicity.
Therefore, a row shows bootstrap confidence of an S-gene being upstream of other
genes, and a column shows bootstrap confidence of a gene being downstream of other
genes.

vesicle trafficking and export from the endoplasmic reticulum (SEC24D).

9.5 Expanded Cancer Invasion Frontier

The predicted signaling network was used to predict the specific attachments

of each gene in the genome. We found 1752 genes attached to the invasion network

at the FDR of 5%, using a permutation test as in the previous tier. We performed

a Gene Ontology enrichment analysis for each connection point in the network, and
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Figure 9.6:

found many GO categories enriched at the FDR of 5%. For Gene Ontology (GO) [4]

enrichment analysis of the frontier E-genes, a frontier set was constructed for each

S-gene consisting of any attached E-gene that had a positive LAR for inhibitory or

activating attachment. Identifiers were mapped to Entrez Gene for both frontier sets

and GO sets. Enrichment p-values were calculated for every frontier set-GO set overlap

using the hypergeometric distribution as the null distribution, and the GO sets were

sorted by their maximum enrichment p-value with any frontier set. The list of GO sets

was filtered by 1) removing sets with fewer than 10 or more than 500 members and 2)

removing any set whose intersection with a GO set with better enrichment p-value is

10% of the size of either set. Using the p-values for enrichment between all frontier sets

and this filtered list of GO sets, I calculated the q-values using the QVALUE package
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in R with default parameters. A q-value is the minimum false discovery rate at which

a test can be considered significant. Figure 9.6 shows the most enriched GO categories

and the enrichment at each attachment point.

The gene with the highest Likelihood Attachment Ratio (LAR) was IFITM1.

In head and neck squamous cell cancer [49] and in gastric cancer [128], increasing

gene product levels of IFITM1 increases invasivity, and suppressing IFITM1 decreases

invasivity.

The most significantly enriched GO term was Ectoderm Development. The

network predicts that the invasion network represses some members of this set and ac-

tivates others, mostly collagens, laminins, keratins, and regulators of these structural

genes. The gene CTGF, which produces the protein connective tissue growth factor,

had the highest LAR in this GO term, and is predicted to be inhibited by the inva-

sion network. CTGF produces an extracellular matrix protein, and in liver has been

proposed as a master regulator of the epithelial-mesenchymal transition, and its pre-

dicted inhibition in our invasion network is consistent with CTGF’s proposed fibrogenic

activity.

The significant enrichment of “negative regulation of mitotic cell cycle” repre-

sents a novel hypothesis about cancer invasion. The activation of GAS1 and other cell

cycle regulators suggests the possibility that cancer invasion requires inactivation of

the cell cycle. GAS1 can modulate both cell proliferation and cell differentiation [85].

Some connections in this network indicate that glutamate may play a role in invasion.

GAS1 is induced by glutamate/NMDA receptor activation [88] in neurons, and in our
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network is predicted to be connected to SCN5A, also expressed in neurons. NARG1,

another gene in the network, is activated by NMDA receptors. In addition the fron-

tier gene SLC1A4, the top “carboxylic acid transport” hit, transports glutamate, in

conjunction with sodium, and is downstream of sodium channel SCN5A.

Cell migration is significantly enriched in the invasion network frontier, with

a q-value of 0.0226. Our network predicts several cell migration genes to be activated

during colon cancer invasion, and the gene NRCAM has the highest LAR of these.

Increased NRCAM expression has previously been shown to enhance cell motility and

tumorigenesis [21]. The cell migration gene with the highest LAR, CCDC88A (also

known as KIAA1212, GIV, and GIRDIN), is predicted to be inhibited by the invasion

network. Previously, CCDC88A has been identified as the binding partner of our S-

gene GNAI3 [46], where it has been identified as essential for leading-edge formation.

We observe repression of CCDC88A from the probes of three distinct ESTs, covering all

known splice forms of the extensively alternatively-spliced CCDC88A. This indicates

that we may predict a novel role for CCDC88A in colon cancer invasion.

Genes annotated for the GO term steroid metabolic process were also signif-

icantly enriched in the network frontier. The colon cancer marker INSIG2 had the

strongest connection to the invasion network and has previously been shown to pro-

mote invasion in an over-expression assay [79]. Export of posttranslationally modified

peptides serve both as both repellent and attractive cues [101], and enrichment of this

GO term in the export/trafficking S-gene domain are suggestive of similar activity for

colon cancer invasion.
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Chapter 10

Discussion

10.1 Conclusions

In this dissertation I have developed two separate methods for inferring large

genetic networks from the downstream effects of perturbations. First, I presented an

extension of Bayesian networks that can infer networks according to epistatic reasoning.

This method, the Joint Intervention Network (JIN), allows for more refined reasoning

than can be accomplished by epistasis analysis alone. However, it is limited to inferences

on a small number of genes. Second, I presented a method called Factor Graph-Nested

Effects Model (FG-NEM), which can infer much larger networks than can JIN. In

addition, it can use effects that are downstream of any network gene, rather than genes

that are downstream of all network genes. However, the regulatory logic is simpler,

and to infer more complex regulatory logic in the FG-NEM framework would require

measurements under multiple simultaneous perturbations.
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With the JIN method my collaborators and I were able to predict a regula-

tory network for V. cholerae biofilm that was consistent with known literature inter-

actions. Further, the network was more useful for expanding the biofilm network than

correlation-based methods. Of the top fifteen predicted biofilm genes from JIN, eight

have independent evidence of involvement in biofilm.

I have applied FG-NEM on synthetic data, S. cerevisiae knockout data, and

a colon cancer cell line. In each system, modeling the sign of interactions has improved

network expansion performance, and where measurable, network structure inference

accuracy. In synthetic data, modeling network sign allows reconstruction of the network

with fewer data replicates than versions of FG-NEM that do not model sign. With

S. cerevisiae knockdowns, FG-NEM is better at expanding functional Gene Ontology

groups than using correlation. In a colon cancer cell line, FG-NEM predicted a total of

fourteen new cancer invasion genes, and was able to distinguish between differentially

expressed genes that are necessary for invasion and those that are not.

10.2 Future Directions

The work in this dissertation can be extended in many directions. More so-

phisticated methods may be used for prioritizing genes for network expansion. Next,

the cellular network could be probed at either narrower or broader scopes than single

proteins; i.e. the specifics of interactions could be probed by using narrower perturba-

tions or the interconnectivity of gene modules in the cellular network could be probed
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by treating entire pathways as a single genetic unit. Finally, as large scale genomic

efforts are directed at clinical cancer data, the pathway methods from this disserta-

tion may be adapted to treat the genomic alterations of cancer as perturbations, and

simultaneously learn both about cancer biology and the underlying human molecular

network.

Recent work in active learning suggests another potential approach for choos-

ing new network candidates. In this dissertation, I assumed genes whose expression

levels are well-explained by the model are of more interest for subsequent rounds of

experimentation. However, it is conceivable to test whether selecting genes based on

reducing a measure of uncertainty across models leads to better gene selection as pre-

viously performed by Yeang et al. [129]. An “active learning” approach prioritizes

knock-down experiments based on the reduction of expected entropy of high-scoring

models. The “informative” experiments would effectively disambiguate the models

which explain the existing data. Fewer experiments might then be needed to narrow

down a unique model of the underlying system [131].

Framing FG-NEM expansion in the active learning context requires both a

measure of entropy of models and a means of predicting the response to hypothetical

interventions. The first requirement, measuring entropy of the inferred model space,

is straightforward for graphical models. However, predicting responses of potential

knockdown A is more difficult. This requires establishing new probability distributions

that correspond to expected data from each possible true location of A in the network.

A different extension to the FG-NEM model could examine either larger or
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smaller genetic perturbations, to examine biological networks at either a narrower or

broader scope. To examine networks at a narrower scope, genetic perturbations must

effect a smaller unit than an entire protein. One way this could be pursued is to con-

struct gene mutants that only disturb a single functional domain in a protein or a single

active site or binding site. For example, it may be possible to more closely examine the

chromatin remodeling machinery by perturbing only small parts of the proteins known

to be part of the pathway, and then look at downstream effects from gene expression,

histone modification, and nucleosome positioning. The model predicted by FG-NEM

from such small scale perturbations may inform the order of or dependence between

steps in chromatin remodeling.

Alternatively, it may be possible to establish the connectivity between larger

genetic modules of the cellular network. Previous work has shown that gene function

can be grouped into modules, such as in the work of Segal et al.[107]. Treating an

entire module as a single genetic unit, and looking at perturbations of these larger

modules rather than perturbations of single genes may reveal the regulatory structure

connecting the modules. This may be particularly relevant when combined with clinical

cancer data.

New genomic efforts on clinical tumor samples are provide a unique oppor-

tunity for pathway-based analysis by methods similar to those in this thesis. Cancer

genomes undergo extensive mutation that involves deletion, amplification, and muta-

tion of genes. Many recent studies [114] are measuring these alterations in addition

to gene expression. By sampling across many different patients, the assorted genomic
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alterations could conceivably serve as perturbations in either the JIN or FG-NEM

methods. Given a set of S-genes, patients could be clustered into groups with identical

genomic alterations on those S-genes. Within each group of identical perturbations,

expression that is consistently different compared to other samples can serves as the

effects in a JIN or FG-NEM. Many pathways important in cancer have been extensively

characterized, offering a better chance for verification of predicted pathways than in

other model systems. Additionally, since pathways important to cancer have been so

extensively studied, I could estimate the perturbation of each pathway outside of the

context of JIN or FG-NEM, for example with the SPIA method [113]. I could then

treat each pathway as a single genetic unit, use expression as downstream effects, and

learn a network of regulation among the signaling pathways important in cancer. The

resulting predicting would be an interpathway map of crosstalk and regulation of high

level processes.
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