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Abstract

Robust AI systems need to be able to reason about their
goals and formulate new goals based on the given sit-
uation. Case-based goal formulation is a technique for
formulating new goals for an agent using a library of
examples. We provide a formalization of this term and
two algorithms that implement this definition. The algo-
rithms are compared against instance-based and model-
based techniques on the tasks of opponent modeling
and strategy selection in the real-time strategy game
StarCraft. Our system, EISBot, implements these tech-
niques and is capable of consistently defeating the built-
in AI of StarCraft.

Introduction
One of the requirements for creating robust real-world AI
applications is building systems capable of deciding which
actions should be performed to pursue a goal. Goal formu-
lation is a technique for an agent to determine which goals
need to be achieved. The major challenges in goal formu-
lation are developing representations for the agent to reason
about, recognizing when new goals need to be formulated
due to plan failure, and operating in a real-time environment.

Contemporary computer games are an excellent domain
for research in this area, because they offer rich, complex do-
mains for AI researchers (Laird and VanLent 2001). Games
resemble the real world in that they are real-time, contain
huge decision spaces, and enforce imperfect information.
Real-time strategy (RTS) games in particular present inter-
esting research challenges (Buro 2003), such as reasoning
about both strategic and tactical goals simultaneously. Per-
forming well in RTS games requires long-term planning.
However, an agent’s goals can become invalidated due to
player interaction.

One of the benefits of using real-time strategy games is
the amount of gameplay data available for analysis. Thou-
sands of professional-level replays are available for games
such as StarCraft (Weber and Mateas 2009a). Developing
techniques for automatically extracting domain knowledge
from game replays is expected to help automate the process
of building game AI (Ontanón et al. 2010) as well as lead to
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more interesting computer opponents that learn a variety of
gameplay styles. The major challenge in harnessing this data
is dealing with the limited amount of information available:
traces contain raw game state and do not contain a player’s
goals or intentions.

In this paper we introduce the term case-based goal for-
mulation. This term refers to performing goal formulation
based on retrieval and adaptation of cases from a library of
examples. Case-based goal formulation is inspired by tech-
niques in the case-based reasoning (Aamodt and Plaza 1994)
and machine learning literature. The goal of this technique
is to automate the process of performing goal formulation
by harnessing a corpus of data. We provide two knowledge-
weak implementations of case-based goal formulation. The
Trace algorithm performs goal formulation by retrieving the
most relevant case and building a new goal state based on the
actions performed in the retrieved case. The MultiTrace al-
gorithm is an extension of the Trace algorithm that retrieves
multiple traces and combines the results.

Related Work
Goal formulation has been applied to building game AI. The
RTS game Master of Orion 3 used a goal-based architecture
to make high-level strategic decisions (Dill and Papp 2005).
The agent’s goal formulation is referred to as a “think” pro-
cess that executes once every 30 seconds. Goal formula-
tion can also be triggered by important game events, such
as capturing an enemy city. The system applies goal inertia
and goal commitment techniques to prevent the agent from
dithering between strategies.

Goal-oriented action planning (GOAP) has been applied
to first person shooter games (Orkin 2003). In a GOAP ar-
chitecture, each non-player character has a set of goals that
can be activated based on relevance. When a goal is trig-
gered by its activation criteria, the system builds a plan to
achieve it. The main challenges in applying GOAP to game
AI are developing suitable world representations and plan-
ning operators that support near real-time operation. Addi-
tionally, GOAP architectures tend to create short-term plans.

Case-based planning is a another technique that can be
applied to building goal-based game AI. Darmok is a case-
based planner that uses game traces to interleave planning
and execution in the RTS game Wargus (Ontanón et al.
2010). Cases are extracted from human-annotated traces and
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Figure 1: Case-based goal formulation makes use of a case library to formulate a goal state. To achieve this goal state the
system computes the actions required to reach the goal state from the current state and then builds a totally-ordered plan.

specify primitive actions and subgoals required to achieve
a goal. The system initially has a single goal of winning
the game, which it achieves by retrieving and adapting cases
from the library to build hierarchical plans. Darmok differs
from our approach in that our case representation contains a
goal state, while Darmok cases contain the actions needed
to a achieve a specific goal. Additionally, our approach does
not require defining a goal ontology or annotating traces.

Case-Based Goal Formulation
Case-based goal formulation is a technique for performing
goal formulation based on a collection of cases. It is moti-
vated by the goal of reducing the amount of domain engi-
neering required to build autonomous agents. For example,
the EISBot contains no pre-authored knowledge of strategic
reasoning in StarCraft, but learns this knowledge automati-
cally from case-based goal formulation.

An overview of case-based goal formulation is shown in
Figure 1. The inputs to the system are the current world
state and the case library. The task of the goal formulation
component is to determine a new goal state for the agent to
pursue. The world state and goal state are then passed to the
planner, which determines the actions necessary to reach the
goal state from the current world state. The output of the
system is a totally-ordered plan for the agent to execute.

We refer to the number of actions in the generated plan
as the planning window size. The motivation for retrieving
a set of actions versus a single action is to enable a tradeoff
between plan size and re-planning. A small planning win-
dow should be used in domains where plans are invalidated
frequently, while a large planning window should be used in
domains that require long-term plans.

Case-based goal formulation resembles classification and
case-based planning. In the case that the planning window
size is set to 1, our technique is similar to classification algo-
rithms. This results from goal formulation retrieving a single
action to execute, which eliminates the need for planning.
In case-based planning (Cox, Muñoz-Avila, and Bergmann
2006), the agent’s goal is defined before retrieval and the
retrieval process consists of building a plan to achieve the
agent’s goal. In case-based goal formulation, the planning
process is decoupled from the case-retrieval process.

Formalization
We define goal formulation as follows:

given the world state, s, and the agent’s current goal
state, g, formulate the agent’s new goal state, g′, after
executing n actions in the world

where n is the planning window size1. Case-based goal for-
mulation is a technique for implementing goal formulation.
It is defined as follows:

the agent’s new goal state, g′, is computed by retrieving
the most similar case, q, to the current goal state, g, and
adding the difference between q and its future state, q′,
which is the state after n actions have been applied to
the case.

Formally:

q = min(distance(g, c))

g′ = g + (q′ − q)
where c is a case in the case library and the distance function
may be a domain independent or domain specific distance
metric.

Trace Algorithm
The Trace algorithm is a technique we developed for imple-
menting case-based goal formulation using traces of world
state. A trace is a list of tuples containing world state and ac-
tions, and is a single episode demonstrating how to perform
a task in a domain. For example, a game replay is a trace
that contains the current game state and player actions exe-
cuted each game frame, which demonstrates how to perform
a specific task in the game.

The algorithm utilizes a case representation where each
case is an unlabeled feature vector which describes the world
state at a specific time. The algorithm is capable of deter-
mining the actions performed between different time steps
by analyzing the difference between feature vectors. Note
that computing the actions performed between time steps
is trivial in our example domain, because each action in
this domain corresponds to incrementing or decrementing
a single feature. However, this task may be non-trivial in
domains with actions that modify multiple features and be-
comes a planning problem.

Cases from a trace are indexed using the time step feature.
This enables efficient lookup of q′ once a case, q, has been

1Goal formulation has been more generally defined as creating
a goal, in response to a set of discrepancies, given their explanation
and the current state (Muñoz-Avila et al. 2010).



selected. Assuming that the retrieved case occurred at time
t in the trace, q′ is defined by the world state at time t + n.
Since the algorithm uses a feature vector representation, g′
can be computed as follows:

q = qt

q′ = qt+n

g′(x) = g(x) + (q′(x)− q(x))
where x is a feature in the case representation.

To summarize, the Trace algorithm works by retrieving
the most similar case, finding the future state in the trace
based on the planning window size, and adding the differ-
ence between the retrieved states to the current goal state.

Example
Consider an agent with a planning window of size 2, a Eu-
clidean distance function, and the following goal state:

g =< 3, 0, 1, 1 >

There is a single trace, consisting of the following cases:

q1 =< 2, 0, 0.5, 1 >

q2 =< 3, 0, 0.7, 1 >

q3 =< 4, 1, 0.9, 1 >

q4 =< 4, 1, 1.1, 2 >

The Trace algorithm would proceed as follows:
1. The system retrieves the most similar case: q2
2. q′ is retrieved: q′ = q2+n = q4

3. The difference is computed: q′ − q =< 1, 1, 0.4, 1 >

4. g′ is computed: g′ = g + (q′ − q) =< 4, 1, 1.4, 2 >

After goal formulation, the agent’s goal state is set to g′.

MultiTrace Algorithm
The MultiTrace algorithm is an extension of the Trace algo-
rithm in which multiple cases are retrieved when formulat-
ing a goal state. The technique is similar to k-NN, where the
k most similar cases are retrieved. The intention of combin-
ing multiple traces for goal formulation is to deal with new
situations that may not be present in the case library. The
algorithm is defined as follows:

wj = e−α∗distance(g,qj)

k∑
j=1

wj = 1

g′(x) = g(x) +

k∑
j=1

wj ∗ (qj ′(x)− qj(x))

where α is a parameter for tuning case relevance2. Each
of the k retrieved cases is assigned a weight based on the
distance to the current goal state. The weights are then nor-
malized. The cases are combined into a single goal state by
multiplying each retrieved case by its weight.

2Functions other than exponential weighting can be used.

Application to RTS Games
We applied case-based goal formulation to the RTS game
StarCraft3. This game was selected, because it provides a
complex domain with a large strategy space and there are a
huge number of professional replays available for building
a case library. Case-based goal formulation was used for
performing opponent modeling and strategy selection.

Case Representation
Our case representation is a feature vector that tracks the
number of units and buildings that a specific player controls.
There is a feature for each unit and building type and the
value of each feature is the number of that type that have
been produced since the start of the game. Since there is an
adversarial player in StarCraft, the goal state encodes only
a single player’s state. The system encodes the agent’s state
for strategy selection and the opponent’s state for opponent
modeling.

Table 1: An example trace showing when a player per-
formed build and train actions.

Frame Player Action
100 1 Train SCV
300 1 Build Supply Depot
500 1 Train SCV
700 1 Build Barracks
900 1 Train Marine

We collected thousands of professional-level replays from
community websites and converted them to our case repre-
sentation. Replays were converted from Blizzard’s propri-
etary binary format into text logs of game actions using a
third-party tool. A subset of an example trace is shown in
Table 1. An initial case, q1, is generated with all values set
to zero, except for the worker unit type (SCV) and command
center type, which are set to 4 and 1 respectively, because the
player begins with these units. A new case is generated for
each action that trains a unit or produces a building. The
value of the new case is initially set to the value of the previ-
ous case, then the feature corresponding to the train or build
action is incremented by one. Considering a subset of the
features (# SCVs, # Supply Depots, # Barracks, # Marines),
the example trace would produce the following cases:

q1 =< 4, 0, 0, 0 >

q2 =< 5, 0, 0, 0 >

q3 =< 5, 1, 0, 0 >

q4 =< 6, 1, 0, 0 >

q5 =< 6, 1, 1, 0 >

q6 =< 6, 1, 1, 1 >

Our case library consists of 1,831 traces and 244,459 cases.

3StarCraft and its expansion StarCraft:Brood War were devel-
oped by Blizzard EntertainmentTM



Evaluation
We evaluated our approach by applying it to opponent mod-
eling in StarCraft. Opponent modeling was performed by
executing goal formulation on the opponent’s state. Given
the opponent’s current state, g, an opponent modeling algo-
rithm builds a prediction of the opponent’s future state, p′,
by applying n actions to g. This prediction is then com-
pared against the opponent’s actual state n actions later in
the game trace, g′. All experiments computed error using
the root mean squared error (RMSE) between the predicted
goal state, p′, and the opponent’s actual goal state, g′.

Experiments used 10-fold cross validation. A modified
version of fold-slicing was utilized to prevent cross-fold
trace contamination, where cases from the same trace are
present in both training and testing datasets. To get around
this problem, all cases from a trace are always included in
the same fold. We had sufficient training data for the folds
to remain relatively balanced.

Case-based goal formulation was compared against clas-
sification algorithms. The classification case representation
contains an action in addition to the goal state, which serves
as a label for the case. The following algorithm was applied
to build predictions with a planning window of size n:

p’ = goal(state g, int n)
if (n == 0) return g
else return goal(g + c(g), n-1)

where goal is the formulation function, c(g) refers to clas-
sifying an instance, and g + c(g) refers to updating the goal
state by applying the action contained in the case. The goal
function runs the classifier, updates the state based on the
prediction, and repeats until n classifications have been per-
formed.

We evaluated the following algorithms: Null predicts
p′ = g and serves as a baseline, IB1 uses a nearest neigh-
bor classifier (Aha, Kibler, and Albert 1991), AdaBoost uses
a boosting classifier (Freund and Schapire 1996), Trace uses
our Trace algorithm with a Euclidean distance metric, and
MultiTrace uses our MultiTrace algorithm with a Euclidean
distance metric. Weka implementations were used for the
IB1 and AdaBoost classifiers (Witten and Frank 2005).

The first experiment evaluated opponent modeling on var-
ious planning window sizes at different stages in the game.
The different stages in the game refer to how many train and
build actions have been executed by the player so far. Dif-
ferent stages in the game were simulated by building pre-
dictions for the cases indexed at a specific time from the
traces in the test dataset. Opponent modeling was applied to
predicting a Terran player’s actions in Terran versus Protoss
matches4.

Results from the first experiment are shown in Figure 2.
The results show that the Trace and MultiTrace algorithms
outperformed the classification algorithms in all of the ex-
periments. The Trace and MultiTrace algorithms perform
similarly, except in the range of 10 to 30 game actions. In
fact, all of the algorithms performed poorly in this range ex-
cept the MultiTrace algorithm. Our hypothesis is that it is

4StarCraft contains three factions: Protoss, Terran, and Zerg

difficult to perform opponent modeling at this stage of the
game, because it is the time at which players begin to work
towards a specific strategy.

The second experiment evaluated the effects of adding ad-
ditional features to the case representation. The additional
features specify the game frame in which the player first
produces a specific unit type or building type (Weber and
Mateas 2009a). There is a timing feature for each of the orig-
inal features. The different feature sets include the original
feature set, the addition of the player timing features (tim-
ing), the addition of the opponent timing features (opponent
timing), and the addition of both player and opponent timing
features (both timing). Results from the second experiment
are shown in Figure 3. The results show that adding any of
the additional feature sets greatly improves opponent mod-
eling in the range of 10 to 30 game actions and that adding
timing information caused the Trace algorithm to perform
slightly better in this range.

Implementation
We implemented case-based goal formulation in a StarCraft
playing agent, EISBot. The agent consists of two compo-
nents: a goal formulation component that performs strat-
egy selection, and a reactive planner that handles second-to-
second actions in the game. EISBot interfaces with StarCraft
using the Brood War API. Currently, EISBot plays only the
Protoss faction.

The goal formulation component uses the Trace algorithm
with the player timing feature set. The agent uses an initial
planning window of size 40, and reduces the window size
to 20 in subsequent formulations. A larger window is used
initially, because the plan to achieve the agent’s initial goal
is unlikely to be invalidated by the opponent in this stage of
the game. The later window size of 20 is used to prevent the
agent from dithering between strategies. Goal formulation is
triggered by the following events: the current plan completes
execution, the agent or the opponent builds an expansion,
or the agent or the opponent initiates an attack. After goal
formulation, the agent’s current plan is overwritten with the
newly formulated plan. Generated plans contain the train
and build actions for the agent to perform.

Our current implementation of EISBot does not use a
planner. Since EISBot retrieves single traces, it sequences
the actions based on the order in which they were performed
in the trace. This is still a form of goal formulation, where
the agent retrieves both a goal and a plan to achieve the goal.

The reactive portion of EISBot is written in the re-
active planning language ABL (Mateas and Stern 2002).
The agent’s behavior is composed of several managers that
handle different aspects of gameplay (McCoy and Mateas
2008). For example, the tactics manager handles combat,
while the worker manager handles resource gathering. EIS-
Bot interfaces with the goal formulation component through
working memory, which serves as a blackboard. Our ap-
proach is similar to previous work, which interfaces ABL
with a case-based reasoning component (Weber and Mateas
2009b). McCoy and Mateas’s integrated agent design was
initially applied to Wargus, but transferred well to Star-
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Figure 2: Root mean-squared error (RMSE) of the algorithms on various planning window sizes. The horizontal axis refers to
the number of train and build actions that have been executed by the player.
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Table 2: Results versus the built-in StarCraft AI

Versus
Protoss Terran Zerg Overall

Win-loss record 7-13 20-0 4-16 31-29
Win ratio 0.35 1.00 0.20 0.52

Table 3: Results versus human players

Versus
Protoss Terran Zerg Overall

Win-loss record 3-20 2-15 2-8 7-43
Win ratio 0.13 0.12 0.20 0.14

Craft. The main change required was the addition of micro-
management behaviors in the tactics manager.

We evaluated EISBot versus the built-in AI of StarCraft
as well as human players on a StarCraft ladder server. All
matches were played on the map Python, which has been
used in professional gaming tournaments. Results versus
the built-in AI are shown in Table 2. Our agent was able
to consistently defeat Terran opponents, but had less suc-
cess versus the other factions. EISBot lost to Protoss and
Zerg opponents due to lack of sufficient behaviors for han-
dling unit formations and grouping. Results versus human
players are shown in Table 3. While EISBot won only 14%
of matches, it is important to note that the agent was eval-
uated on a highly competitive ladder server. Also, players
were notified that they were playing a bot, which may have
caused players to harass it for an easy victory.

Conclusions and Future Work
Case-based goal formulation is a technique for creating
goals for an agent to achieve, which resembles case-based
reasoning and instance-based techniques. The process for-
mulates goal states based on a library of examples. This
technique is useful for domains where there is an abundance
of data and domain engineering is challenging.

We presented two algorithms for implementing case-
based goal formulation. The algorithms were shown to out-
perform classification techniques in opponent modeling. We
also presented an implementation of our technique in a com-
plete game playing agent, EISBot, that consistently defeats
the built-in AI of StarCraft and occasionally defeats com-
petitive human players.

While we applied case-based goal formulation to the do-
main of real-time strategy games, the technique could be
generalized to other domains as well. Case-based goal for-
mulation provides an implementation of the goal formu-
lation component in the goal driven autonomy conceptual
model (Muñoz-Avila et al. 2010).

There are two main research directions for future work in
this area. The first direction is to investigate the application
of a conventional planner to our agent. One of the bene-
fits to using a planner would be the application of additional
domain knowledge, such as adding the unit dependencies

necessary to achieve a goal state or factoring in state from
the reactive planner. The second direction is to evaluate the
potential of our approach in transfer learning tasks, such as
playing all three factions in StarCraft.
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