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Abstract

A big challenge for creating human-level game AI is
building agents capable of operating in imperfect infor-
mation environments. In real-time strategy games the
technological progress of an opponent and locations of
enemy units are partially observable. To overcome this
limitation, we explore a particle-based approach for es-
timating the location of enemy units that have been en-
countered. We represent state estimation as an optimiza-
tion problem, and automatically learn parameters for the
particle model by mining a corpus of expert StarCraft
replays. The particle model tracks opponent units and
provides conditions for activating tactical behaviors in
our StarCraft bot. Our results show that incorporating
a learned particle model improves the performance of
EISBot by 10% over baseline approaches.

Introduction

Video games are an excellent domain for AI research, be-
cause they are complex environments with many real-world
properties (Laird and van Lent 2001). One of the environ-
ment properties under the designer’s control is how much in-
formation to make available to agents. Designers often limit
the amount of information available to agents, because it en-
ables more immersive and human-like behavior (Butler and
Demiris 2010). However, accomplishing this goal requires
developing techniques for agents to operate in partially ob-
servable environments.

StarCraft is a real-time strategy (RTS) game that enforces
imperfect information. The “fog of war” limits a player’s
visibility to portions of the map where units are currently
positioned. To acquire additional game state information,
players actively scout opponents to uncover technological
progress and locations of enemy forces. Players use infor-
mation gathered during scouting to build expectations of fu-
ture opponent actions. One of the challenges in RTS games
is accurately identifying the location and size of opponent
forces, because opponents may have multiple, indistinguish-
able units.

We investigate the task of maximizing the amount of in-
formation available to an agent given game state observa-
tions. To accomplish this goal, we propose a particle-based
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approach for tracking the locations of enemy units that have
been scouted. Our approach is inspired by the application of
particle filters to state estimation in games (Bererton 2004).
It includes a movement model for predicting the trajecto-
ries of units and a decay function for gradually reducing the
agent’s confidence in predictions.

To select parameters for the particle model, we represent
state estimation as a function optimization problem. To im-
plement this function, we mined a corpus of expert StarCraft
replays to create a library of game states and observations,
which are used to evaluate the accuracy of a particle model.
Representing state estimation as an optimization problem
enabled off-line evaluation of several types of particle mod-
els. Our approach uses a variation of the simplex algorithm
to find near-optimal parameters for the particle model.

We have integrated the best performing particle models in
EISBot, which is a StarCraft bot implemented in the ABL
reactive planning language (Weber et al. 2010). The particle
model provides conditions that are used to activate tactical
behaviors in EISBot, such as defending a base or engaging
enemy forces. We evaluate the performance of the particle-
based approach against the built-in AI of StarCraft, as well
as entries from the AIIDE 2010 StarCraft AI competition.
The results show that the optimized particle model improved
both the win ratio and score ratio of EISBot by over 10%
versus baseline approaches.

Related Work

There are two main approaches for estimating the position
of a target which is not visible to an agent. In a space-based
model, the map is represented as a graph and each vertex is
assigned a probability that it contains the target. In a particle-
based model, a cloud of particles represent a sampling of
potential coordinates of the target (Darken and Anderegg
2008). Both approaches can apply a movement model for
updating estimations of target locations.

Occupancy maps are a space-based model for tracking tar-
gets in a partially observable environment (Isla 2006). The
map is broken up into a grid, where each node is the grid
is connected to adjacent nodes. During each update there
is a diffusion step where each node transfers a portion of
the probability it contains the target uniformly to adjacent
nodes. The update cycle contains a visibility check where
nodes visible to the agent not containing the target are as-



signed a weight of zero, and a normalization process that
scales the weights of nodes. One of the challenges in apply-
ing occupancy maps is selecting a suitable grid resolution,
because visibility computations can become prohibitively
expensive on large grids.

Tozour (2004) presents a variation of occupancy maps
which incorporate observations made by an agent. The agent
maintains a list of visited nodes, and searches for targets by
exploring nodes that have not been investigated. The model
can incorporate a decay, which will cause the agent to grad-
ually investigate previously explored nodes.

Hladky and Bulitko (2008) demonstrate how the accuracy
of occupancy maps can be improved by applying move-
ment models based on player behavior. Rather than uni-
formly transfer probability to adjacent nodes, their approach
uses hidden semi-Markov models (HSMM) to learn transi-
tions between grid nodes based on previous observations.
The transitions are learned by analyzing a corpus of game
logs, extracting game state and observations, and training
motion models from this data. While the accuracy of predic-
tions generated by the HSMMs were comparable with hu-
man experts, their analysis was limited to a single map.

Particle filters are an alternative method for tracking tar-
gets. This approach has a rich history in robotics, and has
been applied to several problems including localization and
entity tracking (Thrun 2002). The application of particle
filters to state estimation in games was first proposed by
Bererton (2004) as a technique for creating agents that ex-
hibit an illusion of intelligence when tracking targets. Parti-
cle filters can be applied to target tracking by placing a cloud
of particles at the target’s last known position, where each
particle performs a random walk and represents a potential
target location. Each update cycle, the position of each parti-
cle is updated based on a movement model, particles visible
by the agent are removed from the list of candidate target
locations, and the weights of the particles are normalized.

One way of improving the accuracy of particle filters is
to apply movement models that mimic the behavior of the
target they represent. Darken and Anderegg (2008) refer
to particles that imitate agent or player behavior as simu-
lacra, and claim that simulacra result in more realistic target
tracking. They propose candidate movement models based
on different types of players. Another approach for improv-
ing accuracy is to replace the random walk behavior with
complex movement models that estimate the paths of targets
(Southey, Loh, and Wilkinson 2007).

Particle Model

The goal of our model is to accurately track the positions
of enemy units that have been previously observed. Our ap-
proach for achieving this task is based on a simplified model
of particle filters. We selected a particle-based approach in-
stead of a space-based approach based on several properties
of RTS games. It is difficult to select a suitable grid resolu-
tion for estimation, because a tile-based grid may be too fine,
while higher-level abstractions may be too coarse. Also, the
model needs to be able to scale to hundreds of units. Finally,
the particle model should be generalizable to new maps.

Figure 1: Particle trajectories are computed using a linear
combination of vectors. The movement vector captures the
current trajectory, while the target vector factors in the unit’s
destination and the chokepoint vector factors in terrain.

Our particle model is a simplified version of particle fil-
ters, where a single particle is used to track the position of
a previously encountered enemy unit, instead of a cloud of
particles. A single particle per unit approach was chosen,
because an opponent may have multiple, indistinguishable
units. Since an agent is unable to identify individuals across
multiple observations, the process for culling candidate tar-
get locations becomes non-trivial. We address this problem
by adding a decay function to particles, which gradually re-
duces the agent’s confidence in estimations over time.

Particle Representation

Particles in our model are assigned a class, weight, and tra-
jectory. The class corresponds to the unit type of the en-
emy unit. Our system includes the following classes of units:
building, worker unit, ground attacker, and air attacker. Each
class has a unique set of parameters used to compute the tra-
jectories and weights of particles.

Particles are assigned a weight that represents the agent’s
confidence in the prediction. A linear decay function is ap-
plied to particles in which a particle’s weight is decreased by
the decay amount each update. Particles with a weight equal
to or less than zero are removed from the list of candidate
target locations. Different decay rates are used for different
classes of particles, because predictions for units with low
mobility are likely to remain accurate, while predictions for
units with high mobility can quickly become inaccurate.

Each particle is assigned a constant trajectory, which is
computed based on a linear combination of vectors. A vi-
sualization of the different vectors is shown in Figure 1.
The movement vector is based on observed unit movement,
which is computed as the difference between the current co-
ordinates and previous coordinates. Our model also incor-
porates a chokepoint vector, which enables terrain features
to be incorporated in the trajectory. It is found by comput-
ing the vectors between the unit’s coordinates and the center
point of each chokepoint in the current region, and selecting
the vector with the smallest angle with respect to the move-
ment vector. The target vector is based on the unit’s desti-
nation and is computed as the difference between the desti-



nation coordinates and current unit coordinates. Computing
the target vector requires accessing game state information
that is not available to human players.

The trajectory a of particle is computed by normalizing
the vectors to unit vectors, multiplying the vectors by class-
specific weights, and summing the resulting vectors. Our
model incorporates unique movement and target weights for
each particle class, while a single weight is used for the
chokepoint vector.

Update Process

The particle model begins with an initially empty set of can-
didate target locations. As new units are encountered during
the course of a game, new particles are spawned to track
enemy units. The model update process consists of four se-
quential steps:

• Apply movement: updates the location of each particle
by applying the particle’s trajectory to its current location.

• Apply decay: linearly decreases the weight of each parti-
cle based on its class.

• Cull particles: removes particles that are within the
agent’s vision range or have a less than zero weight.

• Spawn new particles: creates new particles for units that
were previously within the agent’s vision range that are
no longer within the agent’s vision range.

The spawning process instantiates a new particle by com-
puting a trajectory, assigning an initial weight of one, and
placing the particle at the enemy unit’s last known position.

Unlike previous work, our model does not perform a nor-
malization process, because multiple units may be indistin-
guishable. Additionally, our model does not commit to a
specific sampling policy. The process for determining which
particles to sample is left up to higher-level agent behaviors.

Model Training

We first explored the application of particle models to Star-
Craft by performing off-line analysis. The goal of this work
was to determine the accuracy of different model settings
and to find optimal trajectory and decay parameters for the
models. To evaluate the models, we collected a corpus of
StarCraft replays, extracted game state and observation data
from the replays, and simulated the ability of the models to
predict the enemy threat in each region of the map at each
timestep.

Data Collection

To enable off-line analysis of particle models, we collected
thousands of expert-level StarCraft replays from tourna-
ments hosted on the International Cyber Cup1. We sam-
pled the replays by randomly selecting ten replays for each
unique race match up. An additional constraint applied dur-
ing the sampling process was that all replays in a sample
were played on distinct maps. This constraint was included
to ensure that the particle models are applicable to a wide
variety of maps.

1http://iccup.net

We extracted game state information from the sampled
replays by viewing them using the replay mode of StarCraft
and querying game state with the Brood War API2. Our re-
play tool outputs a dump of the game state once every 5 sec-
onds (120 frames), which contains the positions of all units.
The extracted data provides sufficient information for deter-
mining which enemy units are visible by the player at each
timestep. The resulting data set contains an average of 2,852
examples for each race match up.

Error Function

We present a region-based metric for state estimation in Star-
Craft, where the role of the particle model is to predict the
enemy threat in each region of the map. Our error function
makes use of the Brood War Terrain Analyzer, which identi-
fies regions in a StarCraft map (Perkins 2010). The particle
model is limited to observations made by the player, while
the error function is based on complete game state.

Error in state estimation can be quantified as the differ-
ence between predicted and actual enemy threat. Our par-
ticle model predicts the enemy threat in each region based
on the current game state and past observations. For each
region, the enemy threat is computed as the number of vis-
ible enemy units in the region (unit types are uniformly
weighted), plus the summation of the weights of particles
within the region. Given predictions of enemy threat at
timestep t, we compute state estimation error as follows:

error(t) =
∑

r∈R

|p(r, t)− a(r, t)|

where p(r, t) is the predicted enemy threat of region r
at timestep t, a(r, t) is the actual number of enemy units
present in region r at timestep t, and R is the set of regions
in a map. The actual threat for a region can be computed
using the complete information available in the extracted re-
play data. The overall error for a replay is defined as follows:

error =
1

T

T∑

t=1

error(t)

where T is the number of timesteps, and error is the average
state estimation error.

Parameter Selection

Our proposed particle model includes several free parame-
ters for specifying the trajectories and decay rates of parti-
cles. To select optimal parameters for the particle model, we
represent state estimation as an optimization problem: the
state estimation error serves as an objective function, while
the input parameters provide a many-dimensional space. The
set of parameters that minimizes our error function is se-
lected as optimal parameters for our particle model.

To find a solution to the optimization problem, we applied
the Nelder-Mead technique (Nelder and Mead 1965), which
is a downhill simplex method. We used Michael Flanagan’s
minimization library3 which provides a Java implementation

2http://code.google.com/p/bwapi
3http://www.ee.ucl.ac.uk/~mflanaga/java



Table 1: The accuracies of the different particle models varies based on the specific race match up. Overall, the optimized
particle model performed best in the off-line state estimation task. Providing the particle models with additional features,
including the target vector (T ) and ability to distinguish units (I), did not improve the overall accuracies.

PvP PvT PvZ TvP TvT TvZ ZvP ZvT ZvZ Overall

Default 0.751 0.737 0.687 0.571 0.781 0.826 0.628 0.684 0.357 0.669
DefaultI 0.749 0.728 0.710 0.721 0.762 0.766 0.682 0.697 0.561 0.709
Optimized 0.841 0.772 0.733 0.709 0.810 0.827 0.697 0.722 0.544 0.739
OptimizedI 0.749 0.728 0.710 0.721 0.762 0.767 0.682 0.698 0.563 0.709
OptimizedT 0.841 0.740 0.712 0.709 0.810 0.827 0.697 0.722 0.544 0.733

of this algorithm. The stopping criterion for our parame-
ter selection process was 500 iterations, providing sufficient
time for the algorithm to converge.

Evaluation

We compared the performance of our particle model with a
baseline approach as well as a perfect prediction model. The
range of values between the baseline and theoretical models
provides a metric for assessing the accuracy of our approach.
We evaluated the following models:

• Null Model: A particle model that never spawns particles,
providing a baseline for worst-case performance.

• Perfect Tracker: A theoretical model which perfectly
tracks units that have been previously observed, repre-
senting best-case performance.

• Default Model: A model in which particles do not move
and do not decay, providing a last known position.

• Optimized Model: Our particle model with weights se-
lected from the optimization process.

The null model and perfect tracker provide bounds for com-
puting the accuracy of a model. Specifically, we define the
accuracy of a particle model as follows:

accuracy =
errorNullModel − error

errorNullModel − errorPerfectTracker

where error is the state estimation error. Accuracy provides
a metric for evaluating the ability of a particle model to esti-
mate enemy threat.

The accuracy of the default and optimized models for
each of the race match ups are shown in Table 1. A race
match up is a unique pairing of StarCraft races, such as
Protoss versus Terran (PvT) or Terran versus Zerg (TvZ).
The table also includes results for variations of the parti-
cle models which were provided with additional features.
The DefaultI and OptimizedI models were capable of iden-
tifying specific enemy units across observations, and the
OptimizedT model used the target vector while other models
did not. Accuracies for the null model and perfect tracker are
not included, because these values are always 0 and 1. Over-
all, the optimized particle model, which is limited to features
available to humans, performed best. Providing additional
information to the particle models did not, on average, im-
prove the accuracy of models.

We also investigated the variation in accuracy of different
models over the duration of a game, which provides some

Table 2: Decay rates for the different particle classes in Pro-
toss versus Zerg games.

Decay Rate Lifetime (s)

Building 0.00 ∞
Worker 0.00 ∞
Ground Attacker 0.04 22.22
Air Attacker 0.13 5.78

Table 3: Weights for the movement and chokepoint vectors
in Protoss versus Zerg games, in pixels per second.

Movement Vector

Building 0.00
Worker 5.67
Ground Attacker 5.35
Air Attacker 31.57

Chokepoint Vector

All Classes 20.96

insights into the scouting behavior of players. The average
threat prediction errors for the different models in Terran
versus Protoss games is shown in Figure 2. In this race match
up, there was a noticeable difference between the accuracies
of the default and optimized models. Players tend to scout
the opponent between three and four minutes game time,
which leads to improved state estimations. There is little dif-
ference between the default and optimized particle models in
the first 12 minutes of the game, but the optimized model is
noticeably more accurate after this period.

The parameter sets that resulted in the highest accuracy
for state prediction in Protoss versus Zerg games, which are
used by our agent, are shown in Table 2 and Table 3. As
expected, buildings have a decay rate of zero, because the
majority of buildings in StarCraft are immobile. Units that
tend to remain in the same region, such as worker units, have
a long lifetime, while highly mobile units that can quickly
move between regions have short lifetimes. The lack of
building movement is also indicated by the movement vec-
tor. For ground attacking units, the chokepoint vector was
the highest weighted vector, while for air attacking units,
the movement vector was the highest weighted vector.
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Figure 2: The average error of the particle models in Terran versus Protoss games vary drastically over the duration of a game.
The accuracy of the particle models improve over baseline performance once enemy units are scouted. The optimized particle
model noticeably outperforms the default particle model after 12 minutes.

Implementation

We selected the best performing models from off-line anal-
ysis of state estimation and integrated them into EISBot,
which is our Protoss bot for the AIIDE 2011 StarCraft AI
Competition4. EISBot is a reactive planning agent composed
of several managers that specialize in specific aspects of
gameplay. The tactics manager is responsible for deciding
when and where to attack opponent forces. It uses state es-
timations from the particle model in the following tactics
behaviors:

• Defend base: assigns idle attacker units to defensive lo-
cations based on particle positions.

• Attack target: selects locations to attack based on parti-
cle positions.

EISBot executes the particle model update process each
game cycle. New particles that have been spawned are
placed into working memory, enabling reactive planning
behaviors to use predictions in behavior condition checks.
To populate EISBot’s working memory, scouting behaviors
have been added to the agent to ensure that it encounters en-
emy units. An overview of the additional competencies in
EISBot is available in previous work (Weber et al. 2010).

We investigated four particle model settings in EISBot.
These mirror the models used in off-line analysis with one
modification: the perfect tracker was replaced by a perfect
information model, which is granted complete game state.
With the exception of the particle model policy, all other
EISBot settings and behaviors were held fixed.

EISBot was evaluated against the built-in AI of StarCraft
as well as bots from the 2010 AI competition. We selected
bots that incorporate flying units into their strategies, which
includes Skynet (Protoss), Chronos (Terran), and Overmind
(Zerg). EISBot faced a total of six opponents: each race of

4http://StarCraftAICompetition.com

Table 4: Win rates against the other bots with different par-
ticle model settings.

Protoss Terran Zerg Overall

Perfect Info. 50% 83% 67% 67%
Null Model 50% 75% 75% 67%
Default Model 58% 75% 67% 67%
Optimized Model 75% 75% 83% 78%

Table 5: Score ratios against the other bots with different
particle model settings.

Protoss Terran Zerg Overall

Perfect Info. 1.26 1.54 1.35 1.38
Null Model 1.06 1.58 1.59 1.41
Default Model 1.16 1.46 1.35 1.32
Optimized Model 1.55 1.52 1.60 1.56

the built-in AI and the three competition bots. The map pool
consisted of a subset of the maps used in the competition:
Python and Tau Cross.

Each model was evaluated against all opponent and map
permutations in three game match ups, resulting in a total
of 144 games. Win rates for the different models are shown
in Table 4 and score ratios are shown in Table 5. Score ra-
tio is defined as EISBot’s score divided by the opponent’s
score averaged over the set of games played and provides a
finer resolution of performance than win rate. Overall, the
optimized particle model had both the highest win rates and
score ratios by over 10%. The optimized particle model had
the same win rates on both of the maps, while the default
model performed 10% better on Tau Cross and the perfect
information model performed 10% better on Python.



Figure 3: A screen capture of an EISBot versus Overmind
game showing predicted locations and trajectories of flying
units no longer in EISBot’s vision range.

The optimized model had the highest win rate against
Overmind, the previous competition winner. It won 67% of
matches against Overmind while the other models had an
average win rate of 50% against Overmind. A screen cap-
ture visualizing the optimized particle model tracking Over-
mind’s mutalisks is shown in Figure 3. The particle trajecto-
ries are used to anticipate the future positions of the enemy
mutalisks.

A surprising result was that the perfect information model
did not perform best, since it has the most accurate informa-
tion about the positions of enemy forces. The most likely
cause of this result was the lack of scouting behavior per-
formed when utilizing this model. Since the agent has per-
fect information, it does not need to scout in order to pop-
ulate working memory with particles. Scouting units im-
proved the win rate of the agent by distracting the opponent,
such as diverting rush attacks.

Conclusions and Future Work

We have introduced a model for performing state estimation
in real-time strategy games. Our approach is a simplified
version of particle filters that incorporates a constant tra-
jectory and linear decay function for particles. To evaluate
the performance of different particle models, we extracted
game state and observation data from StarCraft replays, and
defined metrics for measuring accuracy. These metrics were
also applied to an optimization problem, and used to find
optimal parameter settings for the particle model.

The particle model was integrated in EISBot and evalu-
ated against a variety of opponents. Overall, the optimized
particle model approach outperformed the other models by
over 10%. Our results also showed that making more game
state available to the agent does not always improve perfor-
mance, as the ability to identify specific units between ob-
servations did not improve the accuracy of threat prediction.

While the optimized model outperformed the default
model, there is still a large gap between it and the perfect

tracker. Future work could explore more complex movement
models for particles, including simulacra (Darken and An-
deregg 2008), path prediction (Southey, Loh, and Wilkinson
2007), or models that incorporate qualitative spatial reason-
ing (Forbus, Mahoney, and Dill 2002). Additionally, future
work could investigate particle models that more closely re-
semble particle filters.
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