
1

Type Safety for JavaScript

Ben Weber

Department of Computer Science

University of California, Santa Cruz

Santa Cruz, CA 95064

bweber@ucsc.edu

Abstract

 JavaScript is a client-side scripting language for the web and has become

increasingly popular with the introduction of AJAX. JavaScript is a dynamic-typed

language and is closer to a functional language than a procedural language. Runtime

errors can occur in JavaScript due to invalid type conversions and accesses to undefined

members of objects. One solution is the use of type systems to validate script before it is

executed. Current work has focused on implementing type inference in JavaScript to

statically check for errors. Additionally, the development of the JavaScript 2.0

specification will enhance the type safety of JavaScript applications.

1 Introduction

JavaScript is a scripting language for the web, originally named ECMAScript [6]. It is

a dynamic, weakly typed language with first-class functions. JavaScript is weakly typed

in the sense that is has objects, but no classes. It relies on prototyping instead of

inheritance to share and extend functionality in the tradition of the Self language [16].

The prototyping functionality of JavaScript makes it an expressive scripting language, but

also exposes an environment in which runtime errors can occur.

JavaScript is a flexible language that allows dynamic addition of members to objects.

Due to this functionality, static type checking of code is not performed. Lack of type

safety makes the development of bug-free applications a difficult task. Runtime errors

can occur if a script attempts to access a member of a class that has not been initialized or

invokes a function that does not exist. Taken together with the possible differences in the

object hierarchies, it can become very hard to debug and maintain JavaScript programs

[15]. Additionally, debugging tools for JavaScript have only recently become available

[5].

The lack of type safety in JavaScript presents security vulnerabilities. Type errors

may result in a buffer overflow [3], causing a web browser to behave erratically.

Malicious errors may enable access to private information. Traditionally, a sandbox

policy is implemented to ensure browser safety. However, the problem with the current

solution is that scripts may conform to the browser policy, but violate the security of the

system [10]. Since certain security vulnerabilities arise from the lack of type safety,

enforcing a type system may prevent these vulnerabilities.

There are four main approaches for implementing type safety in JavaScript. The first

approach adds a static type system to JavaScript [2, 15]. This method enables static

checking of code, but requires type annotations and limits the flexibility of JavaScript

programs. The second approach uses type inference [1] to reduce the amount of

2

annotation required, while ensuring type safety. Another approach is to verify type safety

of a JavaScript program using a type checker implemented in ML [11]. The fourth

approach uses instrumentation of JavaScript code to ensure type safety [17].

There are several tradeoffs to consider when selecting a technique for implementing

type safety in JavaScript. If a static type system is used, then additional annotations are

required. Also, enforcing static types limits backwards compatibility with earlier versions

of JavaScript. If a dynamic type system is used, programmers can make use of flexible

types. However, ensuring type safety for dynamic type systems is difficult. Additionally,

browser implementations for type inference may not be equivalent. In order to support

backwards compatibility while providing flexibility and satisfactory performance,

JavaScript needs to support interoperation between static and dynamic typing. This style

of system has become popularly known as gradual typing [14].

One of the main motivations for implementing type safety in JavaScript is to provide

development tools for assisting well-intended developers to make bug-free applications.

Current development tools, such as JSLint [4], are limited to syntactical checking of

JavaScript code. Only limited support is available for IDE features such as auto-

completion, because JavaScript allows the addition of new members at runtime.

Implementing type inference in JavaScript would make it possible to determine the fields

of an object at compile time, enabling the development of useful tools for building

JavaScript applications.

This paper proceeds as follows. Section 2 provides an overview of the JavaScript

programming language. Section 3 explores vulnerabilities in JavaScript. Static checking

of JavaScript applications is discussed in Section 4 and type systems for JavaScript are

discussed in Section 5. Section 6 gives guidelines for web toolkits. Section 7 discusses

directions for future work.

2 Programming in JavaScript

JavaScript is a classless, object-based language with first-class functions. In addition

to the usual support for imperative programming, JavaScript has lexically scoped first-

class functions so it may be called a functional programming language [15]. The primary

data type of JavaScript is the object, which is a table of properties for fast lookup and

update.

> var person = { name: "Bob", toString: function() { return this.name }}

> person.toString()

 Bob

> person.boss = “Alice”

 Alice

> person.setBoss = function(b) { this.boss = b}

 function (b) { this.boss = b; }

> person.setBoss("John")

> person.boss

 John

Figure 1: Classless JavaScript Example

3

A script demonstrating the classless and dynamic properties of JavaScript is shown in

Figure 1. The script creates a person object with a field specifying the person’s name and

a toString function that returns the name. After instantiating the object and printing the

name, a new field is added to the person specifying the person’s boss. Next, a mutator for

the boss field is added to the object. The mutator is then invoked, setting the boss field to

a new value. The script demonstrates two features that make type checking in JavaScript

difficult: user-defined objects can be created without the definition of a class, and

member variables and functions can be dynamically added to objects.

Functions in JavaScript do not require type annotations for input parameters or return

types. Parameters are passed to a function as a single array accessible with the arguments

keyword. An example script showing how to define and invoke a function is shown in

Figure 2. The script initially defines an addition function which takes the input

parameters a and b. The addition function is then redefined using the arguments array,

resulting in an equivalent function. Next, the function is called with parameters consisting

of numbers, strings, too few arguments and too many arguments. The script demonstrates

that functions in JavaScript will accept any number of arguments and do not enforce

input or output types.

> function add(a, b) { return a + b }

> function add() { return arguments[0] + arguments[1] }

> add(1, 0)

 1

> add("Hello ", "World")

 Hello World

> add()

 NaN

> add(1,2,0)

 3

Figure 2: Functions in JavaScript

JavaScript is a loosely typed programming language. Variables are defined using the

var keyword, which places no restrictions on the type of a variable. A variable can be

defined as an integer and later used as a string or boolean type. The following types are

provided in JavaScript: number, boolean, string, object and function. The type of a

variable can be determined using the typeof keyword, demonstrated in Figure 3.

JavaScript uses the inferred type of variables to determine the operation to perform. For

example, it is necessary to determine whether the “+” symbol is intended for addition of

numbers or concatenation of strings.

 JavaScript allows a variable to modify its type based on the context of its usage. A

script demonstrating the ability of a variable to change types is shown in Figure 4. The

variable x is initially defined as a number. Applying the NOT operator twice converts the

variable to a boolean type. Next, the variable is cast to a string and concatenated with

another string. Applying the NOT operator twice casts the string to a boolean and

4

performing an addition casts the boolean to an integer. Finally, two strings are

concatenated and then converted to an integer to perform subtraction.

> typeof 0

 number

> typeof true

 boolean

> typeof "string"

 string

> typeof (new Array())

 object

> typeof function f() {}

 function

Figure 3: JavaScript Types

> var x = 1

> x = !!x

 true

> x += "string"

 truestring

> x = 10 + !!x

 11

> x = "40" + "1" - x

 390

Figure 4: Type Conversions in JavaScript

3 Vulnerabilities in JavaScript

The ability to dynamically add and update members in JavaScript results in potential

runtime errors. There are several types of runtime errors in JavaScript: applying an

arithmetic operator to an object that is not a wrapper object for a number, accessing a

non-existent variable, and accessing a property of a null object. The cause of many

runtime errors in JavaScript is due to invalid type conversions and the lack of classes.

> "hello " - "world"

 NaN

> "5" / "one"

 NaN

> "true" & false

 0

> "true" - false

 NaN

Figure 5: Arithmetic Errors in JavaScript

5

Type conversion errors occur in JavaScript when arithmetic operations are performed

on non-numeric values. If operands cannot be cast to numeric types, a runtime error is

thrown. Examples of runtime type-conversion errors are show in Figure 5. The first

operation attempts to subtract two strings, resulting in an invalid number. The second

operation attempts to divide two strings representing numbers, but is invalid because the

second string is non-numeric. The third operation demonstrates the unpredictability of

type conversions, since boolean values are provided and an integer type is returned. The

last operation shows another example of unexpected behavior, because the expected

result of 1 is not returned. Many of these errors could be flagged before execution using a

type-checking tool.

Runtime errors can occur in JavaScript due to the lack of enforcement of function

parameters. The number of formal parameters in a function definition need not match the

number of actual parameters. If there are too few parameters, the remaining parameters

are taken to be undefined [15]. An example of a runtime error due to invalid parameters

is shown in Figure 2. When the add function is called without passing input parameters,

the addition operation fails. Since the specification of function parameters is optional in

JavaScript, runtime errors can occur due to undefined variables or invalid types.

3.1 Prototype-Based Errors

JavaScript is a prototype-based language that supports the dynamic addition of

members to objects. Runtime errors occur when a script references an undefined variable

or non-existent member of an object. A prototype-based error in JavaScript is shown in

Figure 6. An object is created with a single member variable. The value of the member

variable is then printed. Then the script attempts to access the member variable y, which

is undefined. Next, the script modifies the value of undefined, which is used incorrectly

in the last line.

> var obj = { x:1 }

> print(obj.x)

 1

> print(obj.y)

 undefined

> obj["undefined"] = "should be undefined"

> print(obj[obj.y])

 should be undefined

Figure 6: Prototype Errors in JavaScript

3.2 Classes in JavaScript

JavaScript is a classless programming language. Despite this property, one of the

most common idioms found in contemporary JavaScript applications is the emulation of

class-based object orientation through the prototype system [11]. Classes are useful

constructs for implementing large applications in JavaScript. However, all members of an

object are public. Therefore, prototype-based errors can still occur when using classes.

Future versions of JavaScript will solve this problem by standardizing a system of classes

and interfaces similar to Java or C# [9, 7].

6

4 Static Analysis of JavaScript Code

Static code-checking tools provide a mechanism for detecting specific runtime errors

in JavaScript. Static code checkers detect syntactical errors, such as undefined global

variables. However, syntax-based tools are unable to determine at compile time if

member references are valid. Another approach to verify JavaScript applications at

compile time is static type systems. If a program passes the type checker, then certain

runtime errors do not occur. Static type systems are further explored in Section 5.

JSLint is a JavaScript syntax checker and validator [4]. It provides warnings for the

following errors: undefined global variables, undefined functions, invalid semicolon

usage, invalid block structure, unreachable code and poor coding style. Since JavaScript

is a loosely typed, dynamic-object language, it is not possible to determine at compile

time if member variables are defined before usage. However, JSLint provides assistance

to help detect erroneous references to member variables. It generates a summary

containing all of the values that were used with dot notation to name the members of

objects. The intended use of this summary is to find misspelled member names. This

functionality also provides a mechanism for tracking unsafe type operations.

Code checking tools enable detection of specific runtime errors, but are targeted at

developers, not users. It is possible for a script with poor coding style to be type safe, but

fail a syntax checker. Therefore, to validate type safety at compile time, several type

systems have been proposed for JavaScript.

5 Type Systems in JavaScript

There are two main approaches for implementing type safety in JavaScript. The first

approach is to implement a static type system to flag suspicious operations at compile

time. Static type systems may require type declarations or only work for a subset of the

JavaScript language. An alternate approach is to use a type inference algorithm to

determine unsafe operations.

5.1 Static Typing

In a statically typed language, the data type of every variable, parameter and function

return value is known at compile time. Type information for data types is specified

through declarations. A type specifies the possible states of an object. If an additional

member is added to an object, new states are possible. Therefore, adding or modifying

the type of a member of an object changes the type of the object. A static type system for

JavaScript needs to track the assignment of members to objects to track the types in a

program.

Anderson and Giannini [2] present a static type system for JavaScript that detects

accesses to non-existent members at compile time. The goal of the system is to maintain

the flexible programming style offered by JavaScript and provide the safety offered by a

static type system. Anderson and Giannini demonstrate the type system with a subset of

JavaScript, JSO. Members of objects in JSO are defined as definite or potential, where

potential members become definite upon assignment. The system enables specification of

static types in a dynamically typed language.

7

> function Person(x) {

> this.money = x;

> }

> function employPerson(x, y) {

> x.boss = y;

> x;

> }

> var john = new Person(100);

> var paul = new Person(0);

> employPerson(paul, john);

Figure 7: Untyped JSO Person Example

In JSO, type annotations are added to JavaScript code in order to specify typing

information for input parameters as well as return values. An example of an untyped JSO

script is shown in Figure 7. In the script, two person objects are instantiated using a

constructor. The second person is then set as the boss of the first person using the

employPerson function.

> function Person(x:Int):t1 {

> this.money = x;

> }

> function employPerson(x:t1, y:t1):t2 {

> x.boss = y;

> x;

> }

> t1 john = new Person(100);

> t1 paul = new Person(0);

> employPerson(paul, john);

Figure 8: Typed JSO Person Example

A typed version of the script is shown in Figure 8. The return types t1 and t2 have

been added to the constructor and employPerson function. Also, type annotations have

been added for function parameters as well as variable declarations. The types t1 and t2

are both person types, but contain different definite members. The function

employPerson returns type t2, because the boss member becomes definite in the body of

the function. Invoking the employPerson function causes the type of Paul to change from

t1 to t2.

JSO prevents runtime errors caused by accessing non-existent members of objects and

the system is sound with respect to the operational semantics given. However, JSO does

not support dynamic variable creation, functions as objects, dynamic removal of

members, delegation and prototyping, because this is too difficult to support in a

dynamically typed language [2]. The main drawback of JSO is the amount of annotation

required to specify type declarations.

8

Other work on static type systems has focused on type conversions [15]. Thiemann

defines a type system that tracks the possible traits of an object and flags suspicious

conversions. The system is guided by a matching relation, which specifies type

convertibility. If a script violates a matching relation, it is flagged or rejected based on

the severity of the error. The type system covers a representative subset of JavaScript and

does not require type declarations. However, the system is unable to detect accesses to

non-existent members at compile time.

5.2 Type Inference in JavaScript

Type inference systems allow programmers to benefit from the safety offered by a

static type system, while leaving programmers free to omit type annotations.

Implementing type inference for JavaScript is difficult, because it is a weakly typed

programming language. Type inference works by reducing expressions to implicitly

typed values, which are used in place of type annotations. However, it is not always

possible to determine the implicit type of an object, requiring the use of explicit type

annotations.

Anderson et al. [1] present a technique for implementing type inference. A non-typed

program is converted into a typed program. If the conversion succeeds, a static type

checker [2] verifies the type safety of the program. Non-typed programs are typed using a

constraint satisfaction algorithm. The algorithm generates a set of type variables with

constraints between them, based on the usage of definite and potential members of

objects. The algorithm attempts to find a solution that satisfies all of the type constraints.

If a solution is found, the program is annotated with type declarations and verified for

type safety. If no solution is found, the type safety of the program cannot be determined.

Type inference can be applied to JavaScript by converting non-typed programs into

typed programs. However, determining if a program is typeable is quite difficult to

achieve for recursive type systems [1]. It may be necessary for some type annotations to

be given by the user.

Hirotaka et al. [12] present a type inference system for JavaScript using theorem

provers based on model generation. They propose a type checking system for a subset of

JavaScript and construct a simple type inference system for this subset. Hirotaka et al.

[13] extend this work by demonstrating that a formal approach to type inference can be

applicable to practical programming languages. However, the systems presented by

Hirotaka et al. are limited to subsets of JavaScript.

5.3 Instrumentation of JavaScript Code

JavaScript has the ability for script to generate additional script, known as higher-

order script. Therefore, static checking of code may be insufficient to ensure type safety.

All of the type systems examined so far have been unable to ensure type safety for

higher-order script. Yu et al. [17] propose runtime instrumentation of JavaScript code to

enforce security policies for higher-order script. JavaScript code goes through a rewriting

process and callbacks are embedded in the instrumented code, generating script that can

be carried out on demand. Instrumentation of JavaScript code provides a mechanism for

ensuring type safety of higher-order script.

9

5.4 JavaScript 2.0

The Ecma TC39-TG1 working group is using ML as the specification language for

the next generation of JavaScript [11]. JavaScript 2.0 will support Class-based OOP,

name management and gradual typing. The name management features will enable

private fields, preventing clients from guessing object properties that are meant to be

internal. The use of a gradual type system introduces type declarations while maintaining

compatibility with earlier versions of JavaScript. Herman and Flanagan use ML to

concisely formalize type soundness for JavaScript: if a JavaScript program passes the

type checker, then certain run-time errors do not occur.

6 JavaScript Toolkits

Several toolkits have been developed to assist programmers in the development of

JavaScript applications, such as the Dojo toolkit [8]. Web toolkits provide standardized

interfaces for performing common tasks on several browsers. Web frameworks ease

development, because applications work across different versions of JavaScript. Toolkits

also improve application security, because they are stable, proven code bases.

Web toolkits provide standard interfaces for performing common tasks. However,

JavaScript does not enforce correct usage of interfaces, since a script may supply invalid

parameters or too few parameters to a method. Therefore, static type checking should be

applied to toolkit interfaces to prevent incorrect usage. Type checking can be achieved by

adding type declarations to toolkit interfaces and verifying that the input parameters meet

the annotated types. Toolkits could use a system of gradual typing to provide static types

for interfaces and utilize dynamic types to implement functionality. Web frameworks can

encapsulate type annotations, easing the transition from the current version of JavaScript

to a type safe version of JavaScript.

7 Conclusion

The lack of type safety in JavaScript presents security vulnerabilities. This paper has

explored several approaches to improve type safety in JavaScript applications. Static type

systems offer the greatest safety, but are the most restrictive. Type inference systems

provide the flexibility of a dynamic type system, while providing the safety of a static

system. However, practical implementation of the full language has been shown to be a

difficult task. Other approaches such as instrumentation of JavaScript code provide

practical mechanisms for improving type safety. The most promising area of work is the

development of a new JavaScript specification, which will enable proper classes and

information hiding.

Currently, type systems are a useful tool for development of JavaScript applications.

Type systems could be used to build powerful integrated development environments,

providing compile-time checking and debugging tools. However, the implementation of

type inference systems or runtime instrumentation may still be impractical for web

browsers. Therefore, web browsers should be responsible for catching and handling type

errors in JavaScript. In order to limit barriers to adoption, JavaScript 2.0 must carefully

weigh the tradeoffs between type safety, implementation complexity, backwards

compatibility and performance.

10

References

1. C. Anderson, F. Giannini, and S. Drossopoulou. Towards Type Inference for JavaScript. Ecoop

2005-Object Oriented Programming: 19th European Conference, Glasgow, UK, July 25-29, 2005:

Proceedings, 2005.

2. C. Anderson and P. Giannini. Type Checking for JavaScript. Electronic Notes in Theoretical

Computer Science, 138(2):37-58, 2005.

3. C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: attacks and defenses for

the vulnerability of the decade. Foundations of Intrusion Tolerant Systems, 2003 [Organically

Assured and Survivable Information Systems], pages 227-237, 2003.

4. D. Crockford. The Java Script Verifier, 2002.

5. D.M. Doolin, N. Sitar, and S. Glaser. The Firebug Project. Homepage: http://firebug.

sourceforge.net/, Stand Nov, 2004.

6. E.S. ECMA. 262. ECMAScript Language Specification, 3(5):47, 1999.

7. E.S. ECMA. 334: C# Language Specification. ECMA, December, 2001.

8. Dojo Foundation. Dojo, the JavaScript toolkit.

9. J. Gosling. The Java Language Specification. Addison-Wesley Professional, 2000.

10. O. Hallaraker and G. Vigna. Detecting Malicious JavaScript Code in Mozilla. Proceedings of the

IEEE International Conference on Engineering of Complex Computer Systems (ICECCS), June,

2005.

11. D. Herman and C. Flanagan. Status report: specifying javascript with ML. Proceedings of the

2007 workshop on Workshop on ML, pages 47-52, 2007.

12. O. Hirotaka, Y. Shin'Ichiro, S. Toshiki, and I. Yasuyoshi. A Formal Approach to Type Inference

System for JavaScript Programs. IEIC Technical Report (Institute of Electronics, Information and

Communication Engineers), 104(47):13-18, 2004.

13. O. Hiortaka, Y. Shin'Ichiro, S. Toshiki, and I. Yasuyoshi. A JavaScript Type Checker based on

Model Generation Theorem Prover. IEIC Technical Report (Institute of Electronics, Information

and Communication Engineers), 105(25):25-30, 2005.

14. J.G. Siek and W. Taha. Gradual typing for functional languages. Scheme and Functional

Programming Workshop, September, 2006.

15. P. Thiemann. Towards a Type System for Analyzing JavaScript Programs. Programming

Languages and Systems: 14th European Symposium on Programming, ESOP 2005, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,

UK, April 4-8, 2005: Proceedings, 2005.

16. D. Ungar and R.B. Smith. SELF: The power of simplicity. Higher-Order and Symbolic

Computation, 4(3):187-205, 1991.

17. D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for browser security.

Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 237-249, 2007.

