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A B S T R A C T

Video games are complex simulation environments with many real-world properties that
need to be addressed in order to build robust intelligence. StarCraft is a real-time strategy
(RTS) game that exhibits both cognitive complexity and task environment complexity. Expert
StarCraft gameplay involves many cognitive processes including estimation, anticipation, and
adaptation. Achieving the objective of destroying all enemy forces requires managing a number
of concurrent subtasks while working towards higher-level objectives. Working towards the
goal of building expert-level performance for RTS games presents a multi-scale AI problem,
which motivates the need for integrative AI systems.

This thesis investigates the capabilities necessary to realize expert StarCraft gameplay in an
agent. My central claim is that in order to perform at the level of an expert player, a StarCraft
agent must utilize heterogeneous reasoning capabilities. This requirement is motivated by the
structure of RTS gameplay, which involves both deliberative and reactive decision making, and
analysis of professional gameplay, which demonstrates the need for estimation, adaptation,
and anticipation reasoning capabilities. Additionally, StarCraft gameplay involves decision
making across multiple scales, or levels of coordination. My approach for supporting these
capabilities in an agent is to identify the competencies necessary for RTS gameplay, and
develop techniques for implementing and integrating these competencies. The resulting agent,
EISBot, integrates reactive planning for plan execution and monitoring, machine learning
for opponent modeling, and case-based reasoning for goal formulation and strategy learning.
EISBot plays StarCraft at the same action and sensing granularity as human players, and is
evaluated against AI and human opponents.

The contributions of this thesis are idioms for authoring agents for multi-scale AI problems,
techniques for learning domain knowledge from gameplay demonstrations, and methods for
integrating a variety of learning algorithms in a real-time, multi-scale agent.
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1
I N T R O D U C T I O N

One of the central goals of artificial intelligence (AI) is to emulate the cognitive abilities demon-
strated by humans in computational systems. Humans exhibit a broad range of reasoning
capabilities and are able to accomplish goals in complex environments. In the domain of
strategy games, expert players perform a number of cognitive processes for building plans
of action, anticipating the actions of other players, and reasoning under uncertainty. Games
provide an environment in which these capabilities can be observed, emulated, and evaluated.

AI has a long history of using games as a testbed for advancing the state of the field [91]. Video
games provide complex simulation environments that require intelligent decision making to
perform at expert human level. One of the benefits of using games for evaluating decision
making systems is that it bypasses many of the problems encountered when building systems
that interact with the real-world [48]. Using a simulated environment enables direct analysis of
the complexity of a task, independent of perception and action concerns. Gameplay involves a
number of cognitive processes, and games provide an environment in which to study intelligent
decision making.

Real-time strategy (RTS) games provide several research challenges that need to be addressed
in order to build real-world AI systems. RTS gameplay involves decision making in a real-time,
partially observable environment with an enormous decision complexity [3]. RTS games are
multi-scale and require concurrently reasoning about goals at multiple levels of coordination
[108]. An initial call for research in RTS games was proposed by Michael Buro at IJCAI in 2003
[13]. He claimed that research in this area would lead to improvements in adversarial planning
under uncertainty, learning and opponent modeling, and spatial and temporal reasoning. More
generally, John Laird and Michael Van Lent claim that games provide the types of problems
that can lead to incremental and integrative advances in AI [49]. While significant effort has
been applied to developing AI for RTS games (e.g. [63, 74, 111]), building expert-level AI for
RTS games remains an open research problem.

This thesis explores the development of an agent for the RTS game StarCraft: Brood War.
I selected this game because it is well studied by humans, presents a deep strategy space,
provides several data sources for learning, and has an active player base. The game is played
at a professional level and agents developed for StarCraft can be evaluated against human
opponents with a strong understanding of the game. This thesis works towards the AI vision of
emulating intelligent decision making in a computational system by identifying a number of
competencies needed for expert StarCraft gameplay, learning additional behavior from expert
demonstrations, and integrating these capabilities in a game-playing agent.

1.1 R E A L - T I M E S T R AT E G Y G A M E S

Real-time strategy is a genre of video games in which a player takes the role of a commander,
usually in a military scenario. The player performs actions by giving orders to units or squads
within a theater of operation. The objectives assigned to the player can include securing
areas of the map, gaining control of specific assets, and destroying opponent forces or bases.
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Figure 1: In real-time strategy games, players take the role of a commander in a military scenario and
pursue objectives including securing areas of the map and destroying opponent forces. Popular
RTS games include StarCraft II by Blizzard Entertainment (left) and Command & Conquer:
Generals by Electronic Arts (right).

Achieving these objectives requires performing a number of different subtasks such as economy
management, production, technology expansion, reconnaissance, and tactics. Two popular
commercial RTS games are shown in Figure 1.

RTS games present complex tasks and learning to play is difficult for both humans and
AI systems. It is difficult to evaluate the reward of individual commands, because the game
duration is often large and may involve thousands of commands. Additionally, making a
mistake early in the game can have drastic consequences. A key difference from other forms
of strategy games is that decisions are made in real-time, which also has the side effect that
inaction is extremely detrimental. One way expert players approach this task is by studying a
corpus of games, building models for anticipating opponent actions, and practicing within the
game environment in order to develop strong gameplay mechanics.

1.2 M O T I VAT I O N

There are a number of ways in which building agents for StarCraft, and more generally RTS
games, motivates AI research. Playing StarCraft requires managing a number of subtasks,
which work towards the high-level objective of defeating opponents. It involves concurrent
and coordinated problem solving across a broad range of competencies, including reactive and
deliberative decision making. I classify the task of playing StarCraft as a multi-scale AI problem,
which is presented in more detail in Section 4.1. Multi-scale problems motivate heterogeneous
agent architectures, because they involve problem solving across multiple abstractions and
require a variety of reasoning capabilities.

Another challenge in developing AI for RTS games is dealing with the massive state space.
RTS games feature hundreds of units with many numeric properties and fast-paced action,
resulting in an astronomical number of states. Due to the size of the state space, it is diffi-
cult to apply exploratory approaches which can learn effective policies online. One way of
dealing with this problem is to bootstrap the learning processes using examples from expert
demonstrations. Because StarCraft presents a massive state space, but has many expert demon-
strations available for analysis, it motivates work in learning from demonstration. Over the
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past decade, professional players have generated a huge collection of StarCraft replays that
can be harnessed by agents that learn from demonstration.

Strategy games with no dominant strategy have a constantly evolving meta game. In StarCraft,
new strategies are constantly being developed to counter the current most effective strategies,
which results in new types of strategies being employed by players. This evolution is also the
result of different maps being added to the game, which support additional types of gameplay
and strategies. In order to perform at an expert level in strategy games it is necessary to track
the evolving meta game to learn which strategies are most effective in specific match ups. This
aspect of strategy gameplay motivates work in strategy learning and adaptation.

StarCraft enforces imperfect information through a fog-of-war, which limits visibility to por-
tions of the map where units are controlled by the player. In order to determine which actions
are being performed by opponents, it is necessary to actively scout the map to find the location
of enemy forces, uncover the technology options unlocked by opponents, and evaluate the eco-
nomic growth of opponents. One way players manage uncertainty is by building expectations
of opponent actions and using these expectations to develop counter strategies. Reproducing
this behavior motivates work in building state estimation and anticipation capabilities for
agents.

One of the benefits of developing AI for a popular game is that the system can be evaluated
against human experts. Rather than limiting evaluation to a set of benchmark problems or static
opponents, using human participants in the evaluation process motivates the development of
agents capable of adapting, learning, and responding to unforeseen game situations.

1.3 O B J E C T I V E S

My main objective for this work is to identify the capabilities necessary for expert StarCraft
gameplay and to realize these capabilities in a game-playing agent. To achieve this goal, I
investigate the following research questions:

1. What competencies are required for expert RTS gameplay?

2. Which competencies can be learned from demonstrations?

3. How can distinct competencies be integrated in a real-time agent?

Investigating these questions works towards the goals of building human-level AI for RTS
games and reproducing a subset of the cognitive capabilities demonstrated by humans.

In order to demonstrate that an agent emulates many of the capabilities necessary for RTS
gameplay, the system should be evaluated in an environment that resembles the interface
provided to human players as closely as possible. Specifically, the agent should not be allowed
to utilize any game state information not available to a human player, such as the locations
of non-visible units, and the set of actions provided to the agent should be identical to those
provided through the game’s user interface. Enforcing this constraint ensures that an agent
which performs well in this domain can demonstrate estimation and anticipation reasoning
capabilities.

RTS gameplay involves decision making across multiple levels of coordination. Units can be
controlled individually, at a squad level, or globally. I refer to problems that involve decision
making and acting across multiple levels of coordination as multi-scale AI problems. StarCraft
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is an instance of a multi-scale AI problem, and one of the objectives of this work is to investigate
methods for authoring agents that perform multi-scale reasoning.

Another objective of this work is to leverage domain knowledge extracted from gameplay
demonstrations. While several competencies can be implemented using hand-authored rules
from a domain expert, this approach is unable to handle the evolving meta-game of StarCraft.
The motivation for learning from demonstrations is to enable capabilities for learning new
behaviors and managing the evolving meta-game of StarCraft. Another benefit of developing
techniques for learning from demonstrations is that it provides mechanisms for reducing the
amount of hand-specified behavior in an agent.

The objective of building a complete game-playing agent that interacts with human oppo-
nents is motivated by the research areas of cognitive systems and expressive AI. My approach
to building an agent for complete gameplay, as opposed to solving specific problems within
RTS games, is inspired by system-level research in cognitive systems [50]. The goal of building
an AI system that interacts with players is inspired by the interaction between AI systems and
audiences common in expressive AI [58]. One of the outcomes of this approach is that the
resulting system can be evaluated with respect to human-level intelligence.

1.4 C O N T R I B U T I O N S

I have focused on the goal of building human-level AI for RTS games. The main contributions
of this work are:

• Multi-Scale Idioms. I classify StarCraft gameplay as a multi-scale AI problem and present
design patterns for authoring agents which perform multi-scale tasks. These idioms
build upon the ABL reactive planning language [59], and enable authoring agents that
perform concurrent and coordinated goal pursuit. These idioms are used to extend
the integrated agent framework of McCoy and Mateas [61], which decomposes RTS
gameplay into domains of competence. The resulting system, EISBot, uses message
passing, unit subtask, and manager idioms to incorporate specialized hand-authored
behaviors within a reactive planning agent.

• Learning from Demonstration. I develop methods that learn from demonstrations and
enable estimation, anticipation, and adaptation capabilities in an agent. My approach
uses game replays from professional StarCraft players as a source of gameplay demon-
strations. I explore three applications of gameplay demonstrations: model training for
classification and regression algorithms that identify the strategy an opponent is perform-
ing and estimate when specific technologies will be produced by a player, case-based
goal formulation for selecting strategies for the agent to pursue and anticipating the
goals of opponents, and parameter selection for a particle model that tracks opponent
forces. I present a number of experiments in which these different models are evaluated
offline.

• Integrated Agent. I extend the integrated agent framework of McCoy and Mateas [59] to
support external, heterogeneous components. Approaches for integrating these compo-
nents include augmenting working memory, external goal formulation, external plan
generation, and behavior activation. These integration approaches build on the message
passing idioms used within the reactive planner and enable a mix of deliberative and
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reactive reasoning processes in the agent. An additional way in which components are
integrated in EISBot is through the goal-driven autonomy conceptual model [65], which
identifies a framework for building self-introspective agents.

The result of this work is a system that integrates a variety of learning algorithms in a multi-
scale agent and performs at the level of a competitive amateur player. An additional outcome
of this work is the first evaluation of a StarCraft agent with competitive human participants,
providing a high-water mark for machine play.

1.5 O R G A N I Z AT I O N

Chapter 2 presents an overview of related work in agent architectures, game AI, opponent
modeling and learning in games. It focuses on related work in RTS games.

Chapter 3 provides an overview of StarCraft and the tasks involved in gameplay. It also
presents an analysis of the domain characteristics and complexity.

Chapter 4 defines multi-scale AI and presents three examples of multi-scale AI problems.
The chapter introduces design patterns that are built upon the ABL reactive planning language
that support the authoring of agents that perform multi-scale reasoning. These design patterns
are applied in EISBot to play complete games of StarCraft.

Chapter 5 presents methods for learning gameplay models from expert demonstrations. The
models enable an agent to anticipate opponent actions, adapt to strategies as gameplay evolves,
and estimate opponent locations. I discuss three ways to use demonstrations: classification
and regression model training, parameter selection for model optimization, and case-based
goal formulation.

Chapter 6 introduces approaches for integrating gameplay models learned from demon-
strations. These integration approaches enable the ABL reactive planner to interface with
external components that augment working memory, generate plans, formulate goals, and
activate behaviors. The chapter then discusses how these design patterns are used in EISBot
and provides an overview of the agent implementation.

Chapter 7 presents an evaluation of EISBot. Ablations of the system are evaluated versus
computer and human opponents.

Chapter 8 provides a recap of the claims presented in this thesis and discusses directions for
future work.



2
R E L AT E D W O R K

The work presented in this thesis draws upon a variety of research areas including agent
architectures, case-based reasoning, and machine learning. Building human-level AI for RTS
games involves integrating heterogeneous reasoning components, dealing with the complexity
of game environments, supporting capabilities for estimation and anticipation, and learning
from demonstration and experience. This chapter provides an overview of related work in
these areas, focusing on the application to RTS games.

2.1 A G E N T A R C H I T E C T U R E S

A number of agent architectures have been used to build agents for games. The most suitable
architecture for a particular task depends on the goals of the system, which can include support
for designer-specified behavior and operating within computational constraints. For real-
time strategy games, an agent architecture should enable reactive and deliberative reasoning
capabilities, support mechanisms for strategy learning, and track anticipated opponent actions.
My system builds on ideas from cognitive architectures, goal-driven autonomy, and reactive
planning in order to realize these capabilities.

2.1.1 Cognitive Architectures

Cognitive architectures work towards the goal of developing mechanisms that underlie hu-
man cognition and provide many of the mechanisms required for integrating heterogeneous
competencies [53]. Research in cognitive architectures strives to develop integrated systems
that exhibit broad capabilities and focuses on performing evaluation at the system level [52].
Langley et al. identify several open issues for cognitive architectures including representational
frameworks that move beyond production systems and plans, and robust learning mechanisms
that extend to complex and unfamiliar domains [52]. While cognitive architectures make strong
claims about modeling human cognitive processes, my system makes no such claims.

ICARUS is a cognitive architecture for physical agents that incorporates concepts from
cognitive psychology [51]. One of the goals of ICARUS is to build an architecture capable of
concurrently reasoning about multiple goals, which can be interrupted and resumed. The
system has components for perception, planning, and acting which communicate through
the use of an active memory. ICARUS uses means-ends analysis when confronted with a new
problem situation. The ICARUS cognitive architecture has been applied to real-time domains
including an urban driving simulation [20] and the first-person shooter game Urban Combat
[21]. While ICARUS provides many of the capabilities necessary for expert RTS gameplay, it
lacks fine-grained controlled structures for authoring highly-specialized behaviors, such as
micromanagement actions.

SOAR is a cognitive architecture that performs state abstraction, planning, and multitasking
[53]. It uses a learning technique called chunking that operates as a caching mechanism and
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enables the system to intermix learning and problem solving. SOAR has been applied to the task
of playing real-time strategy games [111]. The agent includes a middleware layer that serves as
the perception system and gaming interface, global coordinator for forming and managing
groups of units, and finite-state machines for implementing micromanagement actions. RTS
games provide a challenge for the architecture, because gameplay requires managing many
cognitively distant tasks and there is a cost for switching between these tasks. The main
difference from my approach is that my system has a larger focus on coordination across tasks.

2.1.2 Goal-Driven Autonomy

The goal-driven autonomy (GDA) conceptual model provides a framework for creating agents
capable of responding to unanticipated failures during plan execution in complex, dynamic
environments [65]. It is motivated by Michael Cox’s claim that agents should reason about their
goals in order to continuously operate with independence [23]. The conceptual model specifies
subtasks that enable an agent to detect, reason about, and respond to unanticipated events,
and provides a framework for building agents capable of operating in complex domains. The
model contains several components and establishes interfaces between them, but makes no
commitment to specific implementations for any of the components. Current implementations
of components in the model include production rules [107] and case-based reasoning [67].

The GDA model has been used to build autonomous agents for naval strategy simulations
[65], first-person shooters [68, 66], and real-time strategy games [46]. These systems require
a domain expert to specify expectations for every action, explanations for every discrepancy,
and goals for every explanation. To reduce the amount of domain engineering required to
author GDA agents, Muñoz-Avila et al. use case-based reasoning to predict expected states
and formulate goals in response to discrepancies [67]. Jaidee et al. build upon this work and
apply reinforcement learning to learn expected values for goals [45]. My approach generates
expectations, explanations and goals using case-based reasoning as well, but learns a case
library by directly capturing examples from professional demonstrations rather than online
learning. Another difference in my approach is that intent recognition is used to generate
explanations of future world state rather than generating explanations of the current world
state.

2.1.3 Reactive Planning

Reactive planning has been applied to creating autonomous characters for virtual environ-
ments [54, 58]. In a reactive planning system, no sequence of actions is planned in advance,
rather a new action is selected at every instant. A system utilizing reactive planning can operate
in an environment with uncertain effects and handle exogenous events [85]. Reactive planning
is well suited for real-time environments, because the mechanism for behavior selection is
strictly bounded and efficient [54]. One of the strengths of reactive planning is support for
acting on partial plans while pursuing goal-directed tasks and responding to changes in the
environment [47].

A Behavior Language (ABL) is a reactive planning language developed to support the creation
of the believable characters in the interactive drama Façade [60]. ABL adds significant features
to the original Hap [54] semantics, including first-class support for meta-behaviors and joint
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intentions across teams of multiple agents [59]. ABL is well suited for developing autonomous
agents, because it was developed to achieve the following goals: reactivity, responsiveness,
deliberation, and explicit goals [58]. While ABL was designed with the intention of supporting
the creation of autonomous characters, it is applicable to other domains that require combining
reactive, parallel goal pursuit with long-term planfulness [59]. McCoy and Mateas applied ABL
to the task of playing complete games of Wargus [61], an open-source clone of WarCraft II.

An ABL agent can be extended in a number of ways. For example, the agent’s working mem-
ory can be used as a blackboard [36] to enable communication with an external goal formula-
tion component. Additional methods for extending ABL agents are presented in Section 6.2.
Another extension of ABL is the use of reinforcement learning to enable partial specification of
ABL agents [94].

2.2 G A M E A I

AI has been used for several processes in games, with a large focus on authoring non-player
characters (NPCs). Building AI for games presents several challenges, because games are
complex simulation environments with many real-world properties. Game AI is an instance of
expressive AI [58], in which the primary goal is to provide players with an engaging experience.
One of the primary roles of game AI is to provide tools which enable designers to author
engaging gameplay experiences within virtual environments.

A challenge in building commercial game AI is managing the severe computational con-
straints placed on the AI system [13]. While game platforms are increasingly becoming more
powerful, enabling additional computational resources to be allocated to AI, several additional
challenges are present. Ideally, techniques for game AI should enable flexibility during develop-
ment [41], mechanisms for explaining why actions have been selected, and tools for managing
authoring complexity.

Finite state machines (FSMs) are one of the most commonly used techniques for build-
ing game AI [87]. They are popular due to their efficiency, simplicity and expressivity [31].
FSMs define a set of states and allowed transitions between states. Transitions contain a set
of conditions, which specify when it is valid to switch between states. While using FSMs is
straight-forward for simple domains, the approach does not scale well, because the number of
transitions increases polynomially as the number of states increases. One way of overcoming
this authorial burden is to group states together into super-states [31], which results in hierar-
chical FSMs. While hierarchically structuring FSMs helps humans partition complex behavior
into domains of competence, in practice it does not reduce the authoring burden [41]. One of
the major limitations of FSMs is that logic encoded in this representation cannot be reused
across different contexts [77].

Another approach to building game AI is subsumption architectures, which are a layered
approach. In subsumption architectures, lower levels take care of immediate goals and higher
levels manage long-term goals [114]. The levels are unified by a common set of inputs and
outputs, and each level acts as a function between them, overriding higher levels. While
subsumption architectures enable reasoning at multiple levels of granularity, only one layer
can be active at a time. Therefore, agents utilizing this technique can have at most a single
active goal.

Behavior trees have become an adopted technique for building commercial game AI [16, 41].
In a behavior tree, an agent’s behavior is defined by a hierarchically structured, prioritized lists
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of behaviors. Behaviors in this representation contain a set of activation conditions, which
specify when the behavior is valid given the world state. Non-leaf nodes contain a set of
activation conditions, but are not associated with a set of actions to execute. Each decision
cycle, a behavior is selected by re-evaluating the tree from the root node and expanding the tree
until a leaf node is reached. Each node in the tree evaluates which child nodes are valid based
on the activation conditions, and expands the node with the highest priority. Behavior trees
have been used separately for both individual unit control and squad control [43]. The main
drawback of behavior trees is that a substantial amount of domain engineering is required to
build an agent capable of anticipating all game events [107]. This drawback applies to reactive
planning as well, and authoring ABL agents involves substantial domain engineering.

Goal-oriented action planning (GOAP) is a technique for building game AI using planning
[76]. In a GOAP architecture, a character has a set of goals, each of which is mapped to a set
of trigger conditions. When the trigger conditions for a goal become true, the system begins
planning for the activated goal. GOAP architectures utilize a STRIPS-style representation [30]
and build plans by performing heuristic search through a set of operators. In order to operate
in a real-time environment, the planner uses efficient data structures and heuristics for guiding
the planning process [38]. GOAP was first implemented in the FPS game F.E.A.R [77] and has
been applied to building game AI for additional genres.

2.3 O P P O N E N T M O D E L I N G

RTS games are imperfect information environments in which only a portion of the map is
visible to the player. In order to operate with this constraint, players form estimations of the
current game state and build anticipations of opponent actions. Building expectations of game
state based on adversarial actions is a form of opponent modeling. There are two ways oppo-
nent modeling can be used in a game-playing agent: state estimation is the process of building
predictions of the current game state based on prior observations, and plan recognition is the
process of building predictions of future game state based on anticipated opponent actions.
Van den Herik et al. [101] identify a variety of techniques used for opponent modeling in games:
evaluation functions [6], machine-learned function approximators [104], probabilistic models
[17], and case-based models [106].

2.3.1 State Estimation

One of the environment properties often under the designer’s control is how much information
to make available to agents. Designers often limit the amount of information available to agents,
because it enables more immersive and human-like behavior [14]. However, accomplishing this
goal requires developing techniques for agents to operate in partially observable environments.

A problem encountered in imperfect information environments is tracking objects that
were previously observed. The problem of target tracking occurs in RTS games as well as other
genres such as first person shooters. There are two main approaches for estimating the position
of a target which is not visible to an agent. In a space-based model, the map is represented as a
graph and each vertex is assigned a probability that it contains the target. In a particle-based
model, a cloud of particles represent a sampling of potential coordinates of the target [25].
Both approaches can apply a movement model for updating estimations of target locations.
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Occupancy maps are a space-based model for tracking targets in a partially observable
environment [42]. The map is broken up into a grid, where each node in the grid is connected
to adjacent nodes. During each update there is a diffusion step where each node transfers
a portion of the probability it contains the target uniformly to adjacent nodes. The update
cycle contains a visibility check where nodes visible to the agent not containing the target are
assigned a weight of zero, and a normalization process that scales the weights of nodes. One
of the challenges in applying occupancy maps is selecting a suitable grid resolution, because
visibility computations can become prohibitively expensive on large grids.

Tozour presents a variation of occupancy maps which incorporate observations made by an
agent [99]. The agent maintains a list of visited nodes, and searches for targets by exploring
nodes that have not been investigated. The model can incorporate a decay, which will cause
the agent to gradually investigate previously explored nodes. Hladky and Bulitko demonstrate
how the accuracy of occupancy maps can be improved by applying movement models based
on player behavior [37]. Rather than uniformly transfer probability to adjacent nodes, their
approach uses hidden semi-Markov models (HSMM) to learn transitions between grid nodes
based on previous observations.

Particle filters are an alternative method for tracking targets. This approach has a rich
history in robotics, and has been applied to several problems including localization and entity
tracking [97]. The application of particle filters to state estimation in games was first proposed
by Bererton as a technique for creating agents that exhibit an illusion of intelligence when
tracking targets [10]. Particle filters can be applied to target tracking by placing a cloud of
particles at the target’s last known position, where each particle performs a random walk
and represents a potential target location. Each update cycle, the position of each particle is
updated based on a movement model, particles visible by the agent are removed from the
list of candidate target locations, and the weights of the particles are normalized. One of the
problems encountered in applying particle filters to RTS games is that there may be several
indistinguishable units on the map, making the culling process non-trivial. My system uses a
particle model inspired by particle filters, in which single particles are used to track targets and
confidence in predictions decays over time.

2.3.2 Plan Recognition

Plan recognition is the task of inferring an agent’s plans or goals based on observed actions [11].
Techniques for performing plan recognition in games include Bayesian models [5], case-based
reasoning [28], and machine learning [89].

Albrecht et al. applied dynamic belief networks to predicting the player’s current goal in
a dungeon adventure game [5]. Their approach is based on Bayesian models [17], which
apply a probabilistic approach to plan recognition. Explanations for the player’s behavior are
assembled into a Bayesian network, which is a probability distribution over the set of possible
explanations. Their representation enables the use of incomplete and noisy data during both
training and testing, while supporting a stateful model. Their results suggest that dynamic
belief networks offer a promising approach to plan recognition in situations where the causal
structure of the network can be clearly identified [15].

Case-based plan recognition offers an instance-based approach. It has been applied to per-
forming player modeling in Space Invaders [28]. Case-based plan recognition is an experience-
based approach to plan recognition, where case libraries are constructed by observing game
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play. Each observed sequence of actions is assigned a support count, which is used to identify
common strategies. Action sequences with a high support count are marked as plans, added to
the case library, and used to predict a player’s future actions. Cheng and Thawonmas discuss
the application of case-based plan recognition to RTS games [19].

Machine learning has also been applied to plan recognition. Hsieh and Sun built a player
model by analyzing StarCraft replays [40]. Their approach uses a state lattice to represent the
possible strategies and their model predicts the next strategic action a player will execute. The
model is trained on a single player’s replays and therefore represents a player model for a
specific player. Schadd et al. present a two level classifier for predicting a player’s strategy [89].
The top level classifies the player’s style, while the bottom level classifies specific unit types.
Their approach requires hand authoring rules for labeling strategies at each of the levels.

2.4 L E A R N I N G I N G A M E S

Performing well in RTS games involves learning a variety of different tasks. Two approaches
used for building game AI with learning capabilities are online learning and learning from
demonstration. Christian Thurau identifies three layers of behavior that can be learned in
games: reactive behaviors are direct stimuli responses, tactical behaviors are intermediate-level
actions, and strategic behaviors are actions performed in pursuit of goals [98]. RTS games
involve all three behavior levels, but my approach focuses on learning the reactive and strategic
layers.

Due to the vast game space of RTS games, learning approaches have focused on individual
aspects of gameplay. Reinforcement learning [64] and Monte Carlo [8] methods have shown
promising results for tactical aspects in RTS games, while genetic algorithms [84] and case-
based reasoning [3] have been applied to strategy selection. Techniques for strategy selection
have relied on domain-specific knowledge representations, such as a state-lattice [83], to limit
the types of strategies that are explored.

2.4.1 Learning from Demonstration

One way of bootstrapping the learning process in games is to use gameplay demonstrations.
Demonstrations can be generated by individual players or large groups of players. One of
the benefits of learning from groups of players is that it enables the development of robust
intelligence, where agent behavior is built from collective intelligence rather than a small num-
ber of designers [79]. Learning from demonstration also presents several challenges, because
gameplay demonstrations contain noisy, non-intentional actions and natural language, and
lack annotation.

In a typical learning by observation configuration, an agent learns to perform a task solely
from data collected through observation [29]. This is similar to programming by demonstration,
in which an expert purposely demonstrations how to perform a task. Learning from demon-
stration is a generalization of learning by observation in which the players being observed do
not need to purposely demonstrate how to accomplish a specific task [75].

Learning from demonstration has been used to build systems which imitate player behavior
and accomplish goals using a variety of different behaviors. The Drivatar system in Forza
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Motorsport learns how to drive using a collection of racing demonstrations from a player1. The
Drivatar system uses gameplay demonstrations to train reactive-level actions for controlling
a vehicle, as well as tactical-level actions which manage racing tactics such as overtaking
and blocking. The Restaurant Game is an experiment that works towards the goal of building
agents that exhibit convincing social behavior by collecting thousands of demonstrations
from human players [78]. These demonstrations provide examples of how to perform specific
tasks, and can be used to assist in the authoring of game agents. One of the main challenges
in accomplishing this goal is inferring hierarchical task structure, which can be addressed by
leveraging human-annotated demonstrations [80].

Darmok is a case-based planner that learns to play complete games of Wargus from expert
demonstrations [74]. Case-based planning is a technique that builds plans in plan-space rather
than state-space by applying CBR to the plan construction process as opposed to search [24].
Darmok extends traditional case-base planning by operating online, interleaving planning
and execution. Darmok’s case representation includes an encoding of the game state, a goal,
and a set of actions. The goal attribute describes the goal that the case accomplishes in a
human-authored goal hierarchy. The actions in a case specify primitive actions to perform or
additional sub-goals for the planner to pursue. Behaviors selected for execution by Darmok can
be customized by specifying a behavior tree for performing actions [81]. The major limitation
of Darmok is that generating the case library requires manual annotation of demonstrations,
where each action taken by the player is annotated with one or more goals.

Darmok 2 is the successor to the original Darmok system and eliminates the need for players
to manually annotate demonstrations [73]. The system uses a technique based on HTN-maker
[39] in order to automatically learn cases from expert demonstrations. One of the limitations
of this approach is that Darmok 2 relies on the assumption that for each action, the conditions
that become true as an effect of the executed action were intended by the expert. The system
can learn spurious plans for goals that were achieved only accidentally [105].

2.4.2 Case-Based Reasoning in RTS Games

Case-based reasoning (CBR) is a methodology for building systems that learn from experience
[1]. CBR has been applied to solving several sub-problems in RTS games including micro-
management [96], tactics [64], and strategy selection [3]. There are also CBR systems aimed at
building complete game playing agents [74].

Aha et al. were the first to apply CBR to building game AI for RTS games[3]. Their system
used CBR to perform strategy selection in Wargus. It makes use of three sources of domain
knowledge: a state lattice, a set of strategies for each node in the lattice, and cases, which map
game situations to specific nodes in the lattice and contain a performance attribute. Using
this technique requires human authoring of the strategies the agent can pursue and the lattice
which classifies the game state based on high-level strategies. The state lattice contains 20
nodes, each of which are associated with one or more of the seven identified strategies [83].
The system learns cases online by exploring states in the lattice. After execution, a case is
assigned a performance metric based on changes in the agent’s score, which is a function of the
number of units and buildings constructed and destroyed. The system was shown to improve
in performance over time when applied to the task of playing against a pool of fixed strategies.

1 http://research.microsoft.com/en-us/projects/drivatar

http://research.microsoft.com/en-us/projects/drivatar
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Later work performed cross-validation of the technique, in which the strategy tested against
was not used during the training phase [63].

CBR has also been applied to the task of micromanagement in RTS games. Szczepański and
Aamodt used CBR to improve the micromanagement of units in WarCraft III [96]. Their case
representation contains actions and behaviors, where actions are primitive game actions that
are adapted to the current game situation and behaviors are hand-authored rules, such as
retreating when a unit has low health. Case retrieval occurs once per second and behaviors are
used to achieve split-second reactions. One of the major limitations of their representation is a
lack of unit history, which often results in a unit dithering between actions, such as retreating
too frequently. Despite this limitation, their approach was shown to noticeably increase the
utility of units in micromanagement tasks.

Bakkes et al. present a CBR approach for improving a pre-existing game AI for the RTS game
Spring [7]. The purpose of modifying an existing AI was to demonstrate that learning could be
incorporated in a robust AI. The system adds adaptation to the game AI by integrating a CBR
component that selects parameter values used by the AI. Their case representation contains
a set of features describing game state and a label, consisting of 27 parameter values. Their
results showed that adapting the parameters of the AI improved the performance of the system
while maintaining robustness.

Hybrid CBR approaches have also been applied to RTS games. Sharma et al. applied hybrid
CBR/reinforcement learning to MadRTS [92]. They demonstrated that their approach enables
transfer learning of tactical tasks in RTS games, where knowledge learned from a specific tacti-
cal situation can be applied in different tactical situations. Their system uses CBR as a function
approximator for the reinforcement learning component. More recent work demonstrated the
use of hybrid CBR/reinforcement learning in continuous action spaces [64].

Baumgarten et al. present a hybrid CBR system that integrates simulated annealing, decision
tree learning and case-based reasoning [9]. Their system is evaluated in the tactics-based RTS
game DEFCON: Everybody Dies. It uses an initial case library generated from a set of randomly
played games and refines the library by applying an evaluation function to retrieved cases.
Cases are retrieved at the beginning of a game to build a game plan and during the game to
predict opponent movements.

2.5 S U M M A R Y

Previous work has explored many of the capabilities necessary for expert RTS gameplay. Cog-
nitive architectures work towards developing mechanisms that reproduce human cognitive
processes, while game AI techniques support the authoring of agents that operate in complex
environments. A variety of learning approaches have been applied to games enabling agents
to learn from experience and demonstrations, model the actions of opponents, and build
estimations of game state. Generally, previous work has focused on subsets of RTS gameplay or
simplifications of the state space. The main outstanding issues are integrating these diverse
capabilities in a complete game-playing system, and evaluating against human opponents.



3
S TA R C R A F T

StarCraft and its expansion, StarCraft: Brood War were released by Blizzard Entertainment™
in 1998. It is the successor to Blizzard Entertainment’s RTS game WarCraft II, which has been
studied by a number of researchers using the open source clone Wargus [3, 8, 56, 61, 62, 71, 84,
103]. StarCraft is a science fiction real-time strategy game in which players take the role of a
military commander in a complex strategy simulation. A screenshot of a combat scenario in
StarCraft is shown in Figure 2. It is one of the few video games played at a professional level, in
part because gameplay is deep, fast-paced and unforgiving. StarCraft is an excellent domain for
AI research, because gameplay requires many of the capabilities necessary for human-level AI
and it is an environment in which human behavior can be observed, emulated, and evaluated.

In StarCraft, the player takes the role of a military commander and is assigned the objective
of destroying all opponents. Achieving this objective requires performing a number of tasks
including economy management, production, and tactics. This thesis focuses on 1 vs. 1 battles,
in which two players fight for control of a territory with equivalent starting conditions. This
is the most common format for professional matches. StarCraft has three distinct races that
players can command: Protoss, Terran, and Zerg. Each race has a unique technology graph (tech
tree) which can be expanded to unlock new unit types, structures, and upgrades. Additionally,
each race supports different styles of gameplay. Mastering a single race requires a great deal of
practice, and experts in this domain focus on playing a single race.

There is a large community of players supporting StarCraft, which ranges from novices to
professionals. StarCraft is played all over the world, which ensures that there is a large, active
player base for evaluating agents versus human players that have a strong understanding
of the game. StarCraft is played at a professional level in South Korea1, and players spend
substantial amounts of time training and developing gameplay skills. Professional gameplay
involves performing over 300 actions per minute (APM) during peak gameplay and has been
compared to grandmaster play in chess [61]. The professional leagues create an environment
in which the meta-game of StarCraft is constantly evolving. New strategies are constantly being
developed to counter the currently most popular strategies, which ensures that no strategy
becomes dominant. Professional gaming has played an important role in maintaining the
popularity of StarCraft for over a decade after its release [18].

This chapter provides an overview of StarCraft gameplay and the competencies involved,
analysis of the task environment complexity, and discussion of the sources of domain knowl-
edge available for building AI systems.

3.1 G A M E P L AY

StarCraft gameplay involves performing tasks across multiple scales. These tasks include
managing an economy in order to more rapidly bring in resources, expanding a technology tree
to unlock new units and technologies, producing units to develop a combat force, and attacking

1 Korea e-Sports Association: http://www.e-sports.or.kr/

http://www.e-sports.or.kr/
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Figure 2: StarCraft is a real-time strategy game in which the player takes the role of a military commander
and pursues the objective of destroying all opponents.

opponents to destroy opponent forces and bases. An overview of the different tasks is shown in
Figure 3. Gameplay involves coordinated decision making, because actions performed at each
of these levels complement each other and work towards the high-level goal of defeating the
opponent.

At the strategic level, StarCraft requires decision-making about long-term resource and
technology management. For example, if the agent is able to control a large portion of the
map, it gains access to more resources, which is useful in the long term. However, to gain map
control, the agent must have a strong combat force, which requires more immediate spending
on military units, and thus less spending on economic units in the short term.

At the economic level, the agent must also consider how much to invest in various technolo-
gies. For example, to defeat cloaked units, advanced detection is required. But the resources
invested in developing detection are wasted if the opponent does not develop cloaking tech-
nology in the first place.

At the tactical level, effective StarCraft gameplay requires both micromanagement of in-
dividual units in small-scale combat scenarios and squad-based tactics such as formations.
In micromanagement scenarios, units are controlled individually to maximize their utility
in combat. For example, a common technique is to harass an opponent’s melee units with
fast, ranged units that can outrun the opponent. In these scenarios, the main goal of a unit is
self-preservation, which requires a quick reaction time.

Effective tactical gameplay also requires well coordinated group attacks and formations.
For example, in some situations, cheap units should be positioned surrounding long-ranged
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Figure 3: StarCraft gameplay involves managing several tasks in order to defeat opponents. These tasks
include managing an economy, expanding a technology tree, producing units, and attacking
opponents.

and more expensive units to maximize the effectiveness of an army. One of the challenges in
implementing formations in an agent is that the same units used in micromanagement tactics
may be reused in squad-based attacks. In these different situations, a single unit has different
goals: self-preservation in the micromanagement situation and a higher-level strategic goal in
the squad situation.

Expert gameplay requires specializing in several distinct competencies. Micromanagement
is the task of controlling individual units in combat in order to maximize the utility of a unit.
Terrain analysis is another area of competence which determines where to place units and
structures to gain tactical advantages. Strategy selection is the task of determining which unit
types to produce and upgrades to research, in order to counter opponent strategies. Attack
timing is a competency for determining the ideal moment to launch an attack against the
opponent.

3.1.1 Micromanagement

Expert players issue movement and attack commands to individual units to increase their
effectiveness in combat. The motivation for performing these actions is to override the default
low-level behavior of a unit. When a unit is given a command to attack a location, it will
begin attacking the first enemy unit that comes into range. The default behavior can lead to
ineffective target selection, because there is no coordination between different units.

Target selection and damage avoidance are two forms of micromanagement applied to
StarCraft. To increase the effectiveness of units, a player will manually select the targets for
units to acquire. This technique enables units to focus fire on specific targets, which reduces the
enemy unit’s damage output. Another use of target selection is to select specific targets which
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are low in health or high-profile targets. Dancing is the process of commanding individual
units to flee from battle while the squad remains engaged. Running away from enemy fire
causes the opponent units to acquire new targets. Once the enemy units have acquired new
targets, the fleeing unit is brought back into combat. Dancing increases the effectiveness of a
squad, because damage is spread across multiple units, increasing the average lifespan of each
unit.

Micromanagement is a highly reactive process, because it requires a large number of actions
to be performed. During peak gameplay, expert players often perform over three hundred
actions per minute [61]. Effective micromanagement requires a large amount of attention and
focusing too much on micromanagement can be detrimental to other aspects of gameplay,
since the overall advantage gained by micromanaging units is bounded. Due to the attention
demands of micromanagement, it is more common earlier in the game when there are fewer
tasks to manage and units to control.

3.1.2 Terrain Analysis

Expert players utilize terrain in a variety of ways to gain tactical advantages. These tasks
include determining where to build structures to create bottlenecks for opponents, selecting
locations for engaging enemy forces, and choosing routes for force movements. High ground
plays an important role in StarCraft, because it provides two advantages: units on low ground
do not have vision of units on high ground unless engaged, and units on low ground have
a 70% chance of hitting targets on high ground. Players utilize high ground to increase the
effectiveness of units when engaging and retreating from enemy units.

Terrain analysis in RTS games can be modeled as a qualitative spatial reasoning task [32].
While several of the terrain analysis tasks such as base layout are deliberative, a portion of
these tasks can be performed offline using static map analysis. This competency also requires
the ability to manage dynamic changes in terrain caused by unit creation and destruction.

3.1.3 Strategy Selection

Strategy selection is a competency for determining the order in which to expand the tech tree,
produce units, and research upgrades. Expert players approach this task by developing build
orders, which are sequences of actions to execute during the opening stage of a game. As a
game unfolds, it is necessary to adapt the initial strategy to counter opponent strategies. In
order to determine which strategy an opponent has selected, it is necessary to actively scout
to determine which unit types and upgrades are being produced. Players also incorporate
predictions of an opponent’s strategy during the strategy selection process. Predictions can be
built by studying the player’s gameplay history and analyzing strategies favored on the selected
map.

Strategy selection is a deliberative process, because it involves selecting sequences of actions
to achieve a particular goal. Strategy planning can be performed both offline and online. Build
order selection is an offline process performed before the start of a game, informed by the
specific map and anticipated opponent strategies, while developing a counter strategy based
on the opponent strategy during a game is an online task.
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3.1.4 Attack Timing

Attack timing is a critical aspect of StarCraft gameplay, because there is a large commitment
involved. There are several conditions that are used for triggering an attack. A timing attack is
a planned attack based on a selected build order. Timing attacks are used to take advantage of
the selected strategy, such as attacking as soon as an upgrade completes. An attack can also
be triggered by observing an opportunity to damage the opponent such as scouting units out
of place or an undefended base. There are several other conditions which are used to trigger
attacks, such as the need to place pressure on the opponent.

The attack timing competency is deliberative and reactive. Timing attacks can be planned
offline and incorporated into the strategy selection process. The online task of determining
when to attack based on encountered game situations is complex, because a player has only
partial observability.

3.2 D O M A I N P R O P E R T I E S

StarCraft is a complex domain with many real-world properties. It presents players with a
large decision complexity, partially observable environment, hundreds of units to manage
that can have a variety of different actions, and adversarial players. This section focuses on
the environment complexity of StarCraft, while the task complexity of StarCraft gameplay is
discussed in Chapter 4.

An overview of StarCraft in terms of Russell and Norvig’s task environment properties [88]
is shown in Table 1. StarCraft is a partially observable, deterministic, sequential, dynamic,
continuous, and multiagent environment. While StarCraft’s state space is finite, the task is
real-time and therefore a continuous-time problem. StarCraft also has random elements, such
as projectiles having a 70% hit rate from low to high ground, but these outcomes are managed
by a seeded random number generator which produces a deterministic output. However, this
process is hidden from players and it can be argued that the domain is stochastic, because
during gameplay it is unknown whether a projectile will damage a target. I am classifying the
domain as deterministic, because this is a minor aspect of gameplay and assigning the same
actions will always result in the same outcome. The main difference between StarCraft and a
real-world task, such as taxi driving, is that StarCraft is a deterministic simulation.

One of the key differences between RTS games and traditional board games such as chess is
the state-space complexity. In StarCraft there can be hundreds of units in play across a large
map, with several attributes including unit type, health, energy, heading, and acceleration.
Considering only unit types and positions, the state-space complexity of StarCraft can be
estimated as follows:

O((T X Y )U )

U −number of units in play

T −number of unit types in StarCraft

X −number of horizontal map tiles

Y −number of vertical map tiles
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Table 1: A classification of three domains in terms of Russell and Norvig’s task environment properties
[88] shows that many of the properties of StarCraft are also present in real-world tasks, such as
taxi driving.

Chess StarCraft Taxi Driving

Fully vs. Partially Observable Fully Partially Partially

Deterministic vs. Stochastic Deterministic Deterministic Stochastic

(Strategic) (Strategic)

Episodic vs. Sequential Sequential Sequential Sequential

Static vs. Dynamic Static Dynamic Dynamic

Discrete vs. Continuous Discrete Continuous Continuous

Single vs. Multiagent Multiagent Multiagent Multiagent

(Competitive) (Competitive)

StarCraft supports up to 1700 units in play, has over 100 units types, and allows maps with
maximum dimensions of 256 by 256 tiles. This formulation results in a complexity of (100∗
256∗256)1700, or roughly 1011,500. While this estimation allows for illegal states, such as over-
lapping units, the actual state-space of StarCraft is much larger, because units have many more
attributes. This complexity is vastly larger than chess, which Shannon estimated as 1043 [91].

3.2.1 Decision Complexity

A formal analysis of the decision complexity of RTS games was first proposed by Aha et al. [3].
They estimated the decision space of Wargus, which is the set of possible actions that can be
executed at a particular moment, as follows:

O(2W (A∗P )+2T (D +S)+B(R +C ))

W −number of workers

A−number of the type of worker assignments

P −average number of workplaces

T −number of troops

D −number of movement directions

S −number of troop stances (Attack, Move, Hold)

B −number of buildings

R −average number of research options at buildings

C −average number of unit types at buildings

This estimation transfers well to StarCraft, but most parameter values will be larger for StarCraft
than Wargus. Assuming that the decision to perform for each unit can be selected indepen-
dently, the decision complexity can be expressed as follows:

O((W ∗ A∗P )+ (T ∗D ∗S)+ (B ∗ (R +C )))
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Figure 4: There are several sources of domain knowledge for StarCraft including replay files, user-created
repositories of tactics and strategies, and commentaries of professional matches.

Given this formulation, the decision complexity is still large. For example, a game on a 256x256
tile map with 50 worker units results in more than 1,000,000 possible actions. This is vastly
different in scale than the decision complexity of chess, which is approximately 30 [3].

There are several simplifications that humans use to reduce this complexity. First, the
number of possible workplaces is reduced to a few options based on the intended goal of a
building. For example, defensive buildings are usually placed close to choke points. For other
buildings, the location may not be important, as long as the chosen location is within the
player’s base. Second, humans do not individually control large groups of units. Rather, they
are placed into control groups, which group several units together. This reduces the number
of orders needed to accomplish a task. Third, humans realize that units continue to perform
tasks once issued. For example, a worker unit told to mine minerals will continue to mine
minerals, unless destroyed. Therefore, the player can focus attention elsewhere once a worker
unit has been issued an order. Given these reductions, the decision complexity of StarCraft,
from a human’s perspective, is much smaller.

An interesting gameplay space to analyze for RTS games is the strategy space, which defines
the set of viable strategies in a game. In Wargus, the strategy space is small, because they
are near-optimal strategies. In StarCraft, there is no dominant strategy and there is a much
larger strategy space. One approach to estimating the strategy space of a game is to take a
combinatorics approach in which all possible permutations of strategies are enumerated. This
approach is unsuitable for StarCraft, because most outcomes would be nonsensical. Rather, a
knowledge-rich approach must be taken to identify the strategy space as well as determine if
two different strategies are distinct enough to be considered unique.

3.3 K N O W L E D G E S O U R C E S

Due to the popularity of StarCraft, there is a large amount of data that can be used to automate
the process of learning domain knowledge. This data is available in a variety of forms, which
range in richness of information. StarCraft provides the ability to save games in the form of
replays, which contain the user interface actions performed by each player during a game.
While replays are easy to parse, the information that can be extracted is limited to primitive
game actions. Additional discussion of learning from StarCraft replays is presented in Chapter 5.
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Table 2: A user-provided summary for the 10/15 gates build order listed on Liquipedia. The left column
describes when to perform build-order actions, while the right column specifies the build-order
action to perform.

Supply Action

8/9 Pylon

10/17 Gate

11/17 Assimilator

13/17 Cybernetics Core

15/17 Gateway (Cut Probes)

15/17 Dragoon Range

15/17 Dragoon

17/17 Pylon

17/25 2 Dragoons

21/25 Pylon

Commentaries are another form of information for describing RTS gameplay. In a StarCraft
commentary, a commentator provides insight inferring and describing a player’s intentions
and goals, similar to commentary provided for sporting events such as football. However,
extracting information from commentaries requires natural language understanding. Another
source of domain knowledge is user-created repositories of information, such as Liquipedia2.
It is less difficult to extract domain knowledge from repositories than commentaries, because
the information is semi-structured. The tradeoff between richness of information and machine
readability of these different knowledge sources is shown in Figure 4.

One of the ways players learn to play StarCraft is by studying replays and extracting build
orders. A build order is an abstraction of an opening strategy that players can use for com-
municating different strategies. An example build-order summary for the 10/15 gates strategy
listed on Liquipedia is shown in Table 2. The summary is a partially-specified plan that lists
when to perform specific build-order actions in the opening phase of the game. The summary
also includes a list of build orders this opening is strong against, such as fast expanding Terran
opponents, as well as build orders the opening is countered by, such as an early two factory
opening.

There are several actions that need to be performed in order to execute build orders that are
not specified in summaries. For these actions, it is assumed that the player will follow rules of
thumb for decision making tasks such as worker production. In this example, the player should
continue producing worker units until the second gateway is produced, which is when the
plan specifies a “cut probe” action. Additional actions often omitted from build orders include
information about when to scout and how to transition to later strategies. In order to develop a
system capable of utilizing these knowledge sources, it is necessary to encode these rules of
thumb in the AI system [61].

2 http://wiki.teamliquid.net/starcraft

http://wiki.teamliquid.net/starcraft
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3.4 S U M M A R Y

StarCraft is a real-time strategy game in which the player takes the role of a commander in a
military scenario. Gameplay involves managing actions across several different scales as well
as mastering several competencies including micromanagement, strategy selection, and attack
timing. In addition to presenting players with complex gameplay mechanics, the domain
presents several real-world properties to manage including an enormous decision complexity
and partial observability. As a task environment, StarCraft presents many of the challenges that
need to be addressed in order to build AI systems for real-world tasks. One of the ways in which
these problems can be addressed is by leveraging domain knowledge from sources including
replays, repositories, and commentaries. Utilizing this information is difficult, because strategy
summaries such as build orders are under specified and rely on players following rules of
thumb. An AI system which plays StarCraft at an expert level needs to encode these rules of
thumb in order to harness these knowledge sources and learn from gameplay demonstrations.



4
M U LT I - S C A L E A I

One of the capabilities necessary for expert RTS gameplay is the ability to simultaneously
manage several interconnected tasks in pursuit of higher-level goals. In StarCraft, focusing
too much attention on a specific task is detrimental to overall gameplay, because opponents
may gain advantages in other aspects of gameplay. One way players approach this problem is
by satisficing [93], following rules of thumb which provide adequate policies for a subset of
gameplay while focusing attention on tasks that require immediate attention.

A key characteristic of RTS games is that they require concurrent and coordinated goal
pursuit across multiple scales of reasoning. While it is possible to decompose gameplay into
distinct competencies, there is not a clear hierarchical structure, due to cross-cutting concerns.
RTS games present a multi-task problem in which there is not a strict separation across tasks,
and performance in each task impacts other tasks. Additionally, RTS gameplay involves man-
aging units that work towards individual, squad-level, and global goals. I define AI problems
that exhibit these characteristics as multi-scale AI problems.

I use the term scale to refer to an agent that reasons about the actions of actors in the
environment at different levels of detail. This situation occurs in RTS games, because a single
agent controls a large number of units, and it is necessary to reason about both individual
units as well as groups of units. The use of the term scale in this context refers to decision
making across different granularities, or structural scales, and is distinct from temporal scales
or spatial scales.

This chapter introduces the class of multi-scale AI problems and presents three examples.
In order to build agents for this class of problems, I advocate reactive planning, which provides
many of the capabilities necessary for multi-scale reasoning. I then discuss EISBot, which is
built using the ABL reactive planning language, and present idioms used to assist in the agent
authoring process.

4.1 D E FI N I T I O N

A multi-task domain is an environment in which an agent performs two or more separate
tasks [90]. A multi-scale domain is an instance of a multi-task domain in which the following
conditions are met:

1. Multiple Structural Scales: Actions are performed across multiple levels of coordination.

2. Interrelated Tasks: There is not a strict separation across tasks and the performance in
each task impacts other tasks.

3. Real-time: Actions are performed in real-time.

Multi-scale domains present several challenges for building AI systems, because they have
many real-world properties.

The first characteristic of multi-scale domains is that they require agents to perform decision
making across multiple scales, where a scale is a level of coordination. In environments in
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Figure 5: The autonomous characters Grace and Trip in the interactive drama Façade [60] manage
behaviors across several different scales to create a dramatic experience.

which an AI system controls multiple characters or units, decision making can be performed for
individual units or groups of units. Performing well in a multi-scale domain involves pursuing
goals at multiple levels of coordination. RTS games involve decision making across individual
and squad scales, and actions at the squad scale are performed at a higher level of detail than
actions at the individual scale. Effective RTS gameplay involves pursuing goals at different
levels of coordination based on the current situation.

A second characteristic of multi-scale domains is that the tasks are interrelated. This situa-
tion arises when there are dependencies or shared resources across tasks, or there are not clear
boundaries between tasks. One of the challenges in building an agent for a multi-scale domain
is that it is not possible to optimize for each problem separately, due to interactions between
different tasks. In StarCraft, worker units can be utilized for a variety of purposes including
resource collection, scouting, and defense, which means that building an optimal policy for
resource gathering must also factor in other aspects such as base defense. Interrelated tasks
are present in domains in which resources are shared across multiple tasks and there are
cross-cutting concerns between aspects of gameplay.

The third characteristic of multi-scale domains is that they are real-time environments. Due
to this property, agents that operate in multi-scale domains must perform decision making and
act in real-time. This environmental property also limits the amount of time an agent can spend
deliberating on an individual task, because several tasks need to be managed concurrently.

Many computer games are multi-task, but involve decision making at a single scale. For
example, first-person shooter (FPS) games may involve pursuing objectives and managing
weapon inventory. An AI system that controls a single bot in an FPS game performs decision
making at a single scale. If the system also coordinates with other teammates or bots, then
the system is performing multi-scale reasoning with individual and group scales. Instances of
games with multi-scale problems include StarCraft and the interactive drama Façade. Multi-
scale can also be used to classify real-world domains, such as RoboCup Soccer.
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4.1.1 Façade

Façade is an interactive drama developed by Michael Mateas and Andrew Stern [60]. It is an
experiment in Expressive AI in which the player is presented with a dramatically engaging
experience [58]. The player interacts with the autonomous characters Grace and Trip, shown in
Figure 5. The system includes a drama manager for handling narrative progression, a natural
language understanding component for processing player responses, and reactive planners for
implementing the behaviors of Grace and Trip.

Each of the autonomous characters in Façade presents a multi-scale AI problem. In addition
to managing pathfinding and animation goals, the characters interact in group behaviors
and perform dramatic actions that work towards beat-level goals, such as posing a dramatic
question to the player or waiting for the player to respond to a situation [60]. The autonomous
characters Grace and Trip perform actions across the following scales:

1. Individual: The characters pursue pathfinding goals and perform a wide range of ges-
tures and facial expressions.

2. Joint Interactions: Grace and Trip engage in group behaviors with each other and the
player.

3. Beat Progression: Grace and Trip perform actions in pursuit of beat-level goals, which
are selected by a beat manager.

In order for the characters to exhibit believable behavior, actions performed at each scale need
to be coordinated with actions at other scales.

The scales in the autonomous character Grace are interrelated, because there is not a clear
separation between tasks and performing actions at one scale may impact other scales as
well. In Façade, the distance Grace maintains from the player is driven by the movement scale,
but also plays a role in joint interactions with Trip. While it is possible to consider each scale
separately, in order to create convincing performances, it is necessary for scales to coordinate
which dramatic goals are being pursued. The autonomous characters in Façade present multi-
scale domains in which animations, dialog, and timing need to be managed concurrently
across multiple scales in order to create engaging performances.

4.1.2 RoboCup Soccer

The aim of the Robot Soccer World Cup is to create autonomous humanoid robots capable of
winning against the FIFA World Cup champions1. Building robots capable of playing soccer
with humans presents several challenges, because robots must sense and act in the real world.
Another challenge in creating human-level robots for soccer is that gameplay presents a multi-
scale problem. A soccer-playing agent performs actions across the following scales:

1. Individual: Soccer involves second-to-second actions performed in response to the cur-
rent state. These are actions that can be performed by a single agent, such as defending
against a specific player.

1 http://www.robocup.org

http://www.robocup.org
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2. Group: Tactical actions, such as passing to a teammate, are joint interactions involving
communication between players.

3. Team: Strategic actions, such as utilizing more aggressive formations, are global goals
pursued by a team and often managed by external agents.

Each of these scales work towards the high-level goal of winning the game. The tasks in soccer
gameplay are interrelated, because individuals need to coordinate in order to accomplish
group or global goals. If an agent focuses too much attention on individual goals, it can be
detrimental to the team. In soccer, players are a shared resource across different scales and
effective gameplay requires concurrent and coordinated pursuit of individual and group goals.

A RoboCup soccer team can be authored as a single multi-scale agent, or as a multi-agent
system. In a multi-agent system, each player performs decentralized decision making, and
each of the players is at least partially autonomous [113]. In this configuration, each player is
managed by a separate agent, and the system may also include a coach agent that coordinates
team goals. In a multi-scale agent, all of the players are managed by a single monolithic agent.
In this configuration, the multi-scale agent performs all decision making and players have no
autonomy. While both approaches may be applicable to a particular problem, a multi-scale
approach is useful for environments in which the actors being managed require minimal
autonomy.

4.1.3 StarCraft

Building an agent for StarCraft is a multi-scale AI problem, because gameplay involves low-level
tactical decisions that must complement high-level strategic reasoning. At the micromanage-
ment level, individual units are meticulously controlled in combat scenarios to maximize their
effectiveness, while at the macromanagement level, players work towards long-term goals,
such as building a strong economy and developing strategies to counter opponents. StarCraft
gameplay requires performing actions across the following scales:

1. Individual: Units pursue actions that accomplish individual orders. This scale also
involves micromanagement of individual units in combat.

2. Squad: Units can be assigned into control groups and given squad-level orders. Manag-
ing units as squads reduces the number of commands that need to be issued.

3. Global: High-level goals, such as committing to an aggressive push against an opponent,
involve the majority of a player’s units.

Gameplay at each of these scales is necessary in order to achieve the objective of destroying all
opponent forces.

StarCraft gameplay involves managing a number of interrelated tasks, because there are
cross-cutting concerns and shared-resources across different scales. Units can be used for
several purposes in StarCraft. For example, worker units can be used for resource gathering,
scouting, and defense. While performing these tasks, the unit may be pursuing individual
goals such as self preservation, group goals such as absorbing damage, or global goals such as
distracting an opponent army. StarCraft presents a multi-scale domain, because it requires
managing several highly-coupled resources and tasks.
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4.2 R E A C T I V E P L A N N I N G

Reactive planning is well suited for building agents that operate in multi-scale domains,
because it provides mechanisms for concurrent and coordinated goal pursuit across different
granularities. It provides an excellent framework for authoring agents for complex, real-time
environments, because the process for behavior selection is efficient, and it supports acting
on partial plans while pursuing goal-directed tasks. My system utilizes reactive planning in
order to emulate a subset of the capabilities demonstrated by human players. Additionally, my
choice in using reactive planning to implement agent behavior is motivated by previous work
that has used the ABL reactive planning language to author agents for the multi-scale domains
Wargus [61] and Facade [60].

One of the challenges in authoring multi-scale agents is managing behaviors across dif-
ferent scales. A common approach to this problem is to abstract the different scales into
separate layers and build interfaces between the layers. Layered approaches raise difficulties
for multi-scale problems, because layers may compete for access to shared resources, resulting
in complicated inter-layer behaviors that break abstraction boundaries. One of the benefits of
reactive planners is that they provide a unified architecture for authoring agents and provide
mechanisms for reasoning across different scales, including capabilities for message pass-
ing and spawning new goals to pursue. These capabilities can be used to build agents that
simultaneously manage behaviors across different scales.

A disadvantage of reactive planning is that authoring agents requires substantial domain en-
gineering. This process presents an enormous authorial burden for strategic domains, because
it is necessary to specify behaviors to anticipate all events [68]. Unlike cognitive architectures
such as ICARUS [51] which use means-end analysis to handle failures that arise, reactive
planners fail if there are no behaviors which can accomplish an instantiated goal. In order to
overcome these limitations of reactive planning, an agent can integrate external components
that support deliberative reasoning capabilities and learning. Examples of integrating external
components with a reactive planning agent are presented in Chapter 6.

My system is implemented in the ABL reactive planning language. The following sections
provide an overview of the language and semantics. Idioms for authoring ABL agents which
operate in multi-scale domains are presented in Section 4.4.

4.2.1 A Behavior Language

A Behavior Language (ABL) is a reactive planning language based on the believable agent
language HAP [54] and adds significant features to the original Hap semantics [58]. These
include first-class support for meta-behaviors, which manipulate the runtime state of other
behaviors, and joint intentions across teams of multiple agents [59]. ABL supports building
multi-scale game AI, because it enables agents to pursue multiple goals concurrently and
provides mechanisms for facilitating communication between behaviors.

ABL is a reactive planning language in which an agent has an active set of goals to achieve.
Agents achieve goals by selecting and executing behaviors from a hand-authored behavior
library. A behavior contains a set of zero or more preconditions which specify whether it can
be executed given the current world state. There is also a specificity associated with behaviors
that assigns a priority, and behaviors with higher specificities are selected for execution before
considering lower specificity behaviors. The language supports a number of step modifiers
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Goal 1

Root 
Behavior

Goal 2

Sequential
Behavior

Parallel 
Behavior

Goal 3 Physical Act Mental Act

Figure 6: An example active behavior tree (ABT) in an ABL agent. The current expansion of the tree
shows that Goal 1 is being accomplished by a sequential behavior performing a mental act,
while Goal 2 is being pursued by simultaneously performing a physical act in the environment
and subgoaling Goal 3.

which can be used to persistently pursue goals, continue operating when failures occur, and
execute until a goal succeeds.

During the execution of an ABL agent, all of the goals it is pursuing are stored in the active
behavior tree (ABT). Each execution cycle, the planner selects from the open leaf nodes and
begins executing the selected node. A leaf node is a behavior that pursues a goal and consists of
component steps. Component steps can be scripted actions, small computations, or additional
goals. When a node is selected, its component steps are placed in the ABT as the children of
the behavior. An example ABT is shown in Figure 6.

A core component of ABL agents is working memory. ABL’s working memory serves as a
blackboard for maintaining an agent’s view of the world state as well as the current expansion
of the active behavior tree. The agent’s working memory is maintained through the use of
sensors, which add, update and remove working memory elements (WMEs) from ABL’s working
memory. An agent’s working memory can also be modified by the agent at runtime or by an
external component.

One of the benefits of using ABL to author game AI is that scheduling of actions and plan
monitoring is handled by the architecture. Component steps that contain physical acts begin
execution as soon as they are selected from the ABT. Physical acts in ABL can take several
game frames to perform. While executing a physical act, the step associated with the act is
marked as executing, blocking steps after the physical act in an enclosing sequential behavior
until the physical act completes, while steps that are part of parallel behaviors in the ABT
continue. Therefore, unlike behavior tree implementations or deliberative planners, a separate
scheduling component is not necessary for scheduling the actions selected by an ABL agent.

ABL provides a mechanism for handling failures in the execution environment. If the be-
havior chosen for a goal fails for any reason, the behavior and component steps are removed
from the ABT and the goal is again available for selection. This results in the agent selecting
from different behaviors to achieve the goal. ABL differs from traditional planning in that
behaviors selected for expansion may change the state of the execution environment and then
be aborted. ABL does not require an explicit proposition to be true for a behavior to succeed.
This feature was chosen, because it is difficult to create a complete and accurate domain model
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initial_tree {

subgoal sayHello();

}

sequential behavior sayHello() {

act consoleOut("Hello World");

} �
Figure 7: A “Hello World” example in ABL where the agent has a single goal of saying hello.

sequential behavior attackEnemy() {

precondition {

(PlayerUnitWME type==Marine ID::unitID)

(EnemyUnitWME ID::enemyID)

}

act attackUnit(unitID, enemyID);

} �
Figure 8: Behaviors in ABL can include zero of more preconditions, which can also be used to bind

behavior-scoped variables.

of the world. One of the results of this feature is that ABL agents do not require a commitment
to a formal domain model [54].

4.2.2 ABL Semantics

ABL agents are written by authoring a collection of behaviors. Behaviors can perform mental
acts, execute physical acts in the game world, bind parameters, and add new subgoals to the
active behavior tree. Tasks are represented by behaviors in ABL: each behavior contains actions
or additional subgoals that work to accomplish some goal. However, there may be multiple
behavior rules with the same name that represent multiple means of achieving a particular goal.
Thus the name of a behavior is the goal which it accomplishes, while the contents represent
the actual means of achieving that goal.

An example agent with the goal of sayHello is shown in Figure 7. The agent begins executing
the root behavior, defined as initial_tree, which adds the subgoal sayHello to the active
behavior tree. The agent then selects from the behaviors named sayHello to pursue the goal.
In this example, the agent will select the behavior sayHello, resulting in the execution of a
physical act that prints to the console.

ABL behaviors can be sequential or parallel. When a behavior is selected for expansion, its
component steps are added to the ABT. For sequential behaviors the steps are executed serially:
steps are available for expansion once the previous step has completed. For parallel behaviors,
the steps can be expanded concurrently.

Behaviors can include a set of preconditions which specify whether the behavior can be
selected. Preconditions evaluate boolean queries about the agent’s working memory. If all
of the precondition checks evaluate to true, the behavior can be selected for expansion. An
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sequential behavior initializeAgent() {

spawngoal incomeManager();

mental_act {

System.out.println("Started manager");

}

}

sequential behavior incomeManager() {

with (persistent) subgoal mineMinerals();

} �
Figure 9: The spawngoal keyword is used to spawn a new thread of execution and the persistent keyword

enables an agent to continuously pursue a goal.

example behavior with a precondition check is shown in Figure 8. The behavior checks that
there is an agent-controlled unit with the type Marine and that there is an enemy unit. The
first precondition test is performed by retrieving unit working memory elements from working
memory and testing the condition type==Marine. The example also demonstrates variable
binding in a precondition test. The unit’s ID attribute is bound to the unitID variable and used
in the physical act. The second precondition test retrieves the first enemy unit from working
memory and binds the ID to enemyID.

An ABL agent can have several behaviors that achieve a specific goal. An optional specificity
can be assigned to behaviors to prioritize selection. Behaviors with higher specificities are
evaluated before lower specificity actions, but otherwise identically-named behaviors (different
ways of accomplishing a specific goal) are selected randomly. This enables authoring of agents
that have a prioritized set of behaviors to pursue a goal.

Behaviors may also be parameterized. When a parameterized behavior is expanded, it must
be given a parameter as an argument. The contents of the behavior can then reference this
argument. This allows for the same behavior to be instantiated multiple times. For example,
an attack behavior could be instantiated individually for many different units, and could then
order each unit to attack based on that unit’s health. Behavior parameterization is a powerful
tool for re-using behaviors across multiple contexts.

Behaviors can perform mental and physical acts. Mental acts are small chunks of computa-
tional work and are written in Java. Mental acts can be used to add and remove WMEs from
working memory. An example mental act is shown in Figure 9. Physical acts are actual actions
performed by the agent in the game. Physical acts can be instant or have duration. Physical
acts are performed in a separate thread from the decision cycle and do not block the execution
of the ABT. They are removed from the ABT once completed.

ABL provides several features for managing the expansion of the active behavior tree. The
spawngoal keyword enables an agent to add new goals to the active behavior tree at runtime.
The spawned goal is then pursued concurrently with the current goal. The persistent key-
word can be used to have an agent continuously pursue a goal. The use of these keywords is
demonstrated in the example in Figure 9. Upon execution, the initializeAgent behavior
adds the goal incomeManager to the active behavior tree and then executes the mental act.
The persistent modifier is used to force the agent to continuously pursue the mineMinerals
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sequential behavior waitForMarine() {

precondition { (TimeWME time::startTime) }

context_condition {

(TimeWME time < startTime + 10)

}

with success_test {

((PlayerUnitWME type==Marine)

} wait;

} �
Figure 10: Behaviors can include success tests that specify conditions for success and context conditions

that must remain true throughout the duration of a behavior.

goal. Note that if subgoal was used instead of spawngoal in the example, the mental act would
never get executed.

Behaviors can optionally include success tests and context conditions. A success test is
an explicit method for recognizing when a goal has been achieved [54], whereas a context
condition provides an explicit declaration of conditions under which a goal is relevant. If
a success test evaluates to true, then the associated behavior is aborted and immediately
succeeds. Conversely, if a context condition evaluates to false, the associated behavior fails and
is removed from the ABT. An example showing success tests and context conditions is shown
in Figure 10. The behavior binds the current time to the startTime variable. The context
condition checks that no more than 10 seconds have passed since starting the execution of
the behavior. The success test checks if the agent possesses a Marine. When combined with
the wait subgoal, success tests suspend the execution of a behavior until the test conditions
evaluate to true. In the example, the behavior will either return success as soon as the agent
has a Marine, or return failure after 10 seconds have passed.

4.3 A G E N T D E S I G N

EISBot2 is an integrated agent for playing complete games for StarCraft. The core of the agent is
implemented in ABL, which interfaces with the game environment, manages the agent’s active
goals, and handles action execution. While reactive planning does not directly support the
estimation, adaptation, or anticipation capabilities necessary for expert-level RTS gameplay,
it does provide an excellent framework for authoring agent behavior and serves as the glue
for integrating external components with learning and adaptation capabilities. This section
focuses on the development of a collection of base behaviors for EISBot, which enable the
agent to operate in a multi-scale domain, but limits EISBot to a fixed set of strategies. In
Chapter 6, I describe modifications to the agent that enable new strategies to be learned from
demonstrations.

EISBot is based on McCoy and Mateas’s integrated agent framework [61], and extends it
in a number of ways. While the initial agent was applied to the task of playing Wargus, I
have transferred many of the concepts to StarCraft. Additionally, I implemented several of

2 EISBot is short for the Expressive Intelligence Studio Bot, and pronounced “Ice Bot”. The source code for EISBot is
available online: http://code.google.com/p/eisbot/

http://code.google.com/p/eisbot/
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Figure 11: EISBot is composed of managers, each of which is responsible for decision making and action
execution for a gameplay competency.

the competencies that were previously identified, but were stubbed out in the original agent
implementation, such as reconnaissance. I have also interfaced the architecture with external
components as detailed in Chapter 6.

To handle the multiple scales necessary for StarCraft, the agent is based on a conceptual
partitioning of gameplay into distinct scales. While the problem of RTS gameplay is non-
hierarchical due to cross-cutting concerns and shared resources, it is possible to decompose
gameplay into subproblems, as long as there are mechanisms for supporting coordination
across multiple scales. EISBot is composed of managers, each of which is responsible for a
specific aspect of gameplay. The managers pursue goals in parallel and are authored using
multi-scale idioms which enable the agent to handle cross-cutting concerns such as resource
contention.

A manager in EISBot is implemented as a collection of ABL behaviors. Each manager is
responsible for handling a subtask of gameplay, and facilitating communication with other
managers. One of the benefits of partitioning decision making in the agent into separate
managers is that specialized behaviors can be authored for subproblems in the agent, such
as micromanagement, which complement other scales of reasoning. This design provides an
authoring environment which supports specification of rule-of-thumb behaviors as well as
highly-specialized behaviors based on domain knowledge [61].

EISBot is composed of several managers, as shown in Figure 11, which are based on a
decomposition of gameplay into distinct competencies:

• Strategy Manager: Selects a build order and handles high-level decisions. Tasks include
determining when to attack opponents, research unit upgrades, and establish additional
bases. Most decisions are enacted by requesting other managers to perform actions.

• Income Manager: Responsible for worker units and resource gathering. Tasks include
producing additional worker units, processing requests for expanding, assigning idle
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workers to gather, producing facilities for collecting vespene gas, and selecting how many
workers to gather minerals and gas.

• Production Manager: Performs actions for processing construction, training, and re-
search requests. Tasks include constructing new structures and monitoring construction
progress, training new units and building additional production facilities, researching
upgrades at tech structures, producing additional supply sources, and spending excess
resources.

• Tactics Manager: Responsible for handling combat units and engaging enemy units.
Tasks include rallying units and defending bases, assigning units to squads, processing
requests to initiate attacks, regrouping units in a squad, assigning squads attack and
retreat commands, moving support units, and casting abilities and spells.

• Reconnaissance Manager: Performs scouting behaviors using worker and combat units.
Tasks include requesting worker units for scouting, assigning move commands to scout-
ing workers, recording the positions of enemy units and structures, and assigning wander
commands to combat units if there are no estimates of opponent locations.

While some of the tasks performed by the managers can be performed in isolation, most tasks
in EISBot rely on other managers in order to operate.

Each of the managers implements an interface for communicating with other managers in
the system. To facilitate message passing between different managers, the agent uses ABL’s
working memory as a blackboard [36]. The interfaces define how working memory elements
are posted to and consumed from working memory. In EISBot, the managers communicate by
requesting different managers to perform actions, and each manager is expected to process
specific request types as well as generate request types. For example, the production manager
is responsible for processing ConstructionRequestWME objects, which are generated by the
strategy manager and specify a building type to construct. In order to satisfy this request, the
construction manager generates a WorkerRequestWME that is passed to the income manager
in order to free up a worker unit for the construction task.

This approach for building agents enables a modular design with two main benefits. First,
new implementations for managers can be swapped into the agent, as long as the new im-
plementation satisfies the manager’s interface contract [61]. This is one of the ways in which
EISBot integrates external reasoning components. Second, this approach to structuring agents
supports the decomposition of tasks. In EISBot, the decision process for selecting which struc-
tures to construct is decoupled from the construction process, which involves selecting a
construction site and monitoring execution of the task. This decoupling enables the strategy
manager to select which structures to build independent of the process of actually constructing
the structure.

A side effect of this agent design is that the components in the agent are tightly coupled.
Each of the managers depends on other managers and removing any single manager from
the system causes the agent to fail. McCoy and Mateas refer to this problem as manager
interdependence and show that each manager is necessary for the agent to operate [61]. This
side effect is present in my system, because performing multi-scale reasoning for StarCraft
requires coordination across many tasks.
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Figure 12: The game process exposes an interface for authoring agents by injecting the Brood War
API into the StarCraft runtime. EISBot is an ABL agent supported by a Java runtime that
communicates with the game process through a shared memory bridge.

4.3.1 Agent Interface

One of the goals of the agent interface is to resemble the interface provided to human players
as closely as possible. Specifically, the agent should not be allowed to utilize any game state
information not available to a human player, such as the locations of non-visible units, and
the set of actions provided to the agent should be identical to those provided through the
game’s user interface. Enforcing this constraint ensures that an agent which performs well in
this domain is capable of the anticipation and estimation capabilities necessary for expert
gameplay.

EISBot interfaces with StarCraft through the use of sensors that perceive game state and
actuators that enable the agent to send commands to units. An overview of the components in
the EISBot-StarCraft interface are shown in Figure 12. The game process launches StarCraft
using a third party tool, which enables additional dynamically linked libraries (DLLs) to be
injected into the process space. The launcher injects the Brood War API3 (BWAPI), which is a
C++ library that exposes an AI interface for authoring StarCraft agents.

ABL agents are compiled to Java and executed by the ABL runtime, which is also written in
Java. To communicate with the game process, EISBot uses the JNI-BWAPI4 library that exposes
the StarCraft AI interface to Java programs through the Java Native Interface. JNI-BWAPI uses
a shared memory bridge that enables remote processes to access the functions exposed by
BWAPI. The resulting interface provides support for authoring StarCraft agents using the ABL
planning language.

3 http://code.google.com/p/bwapi/

4 http://code.google.com/p/jnibwapi/

http://code.google.com/p/bwapi/
http://code.google.com/p/jnibwapi/
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Figure 13: EISBot’s perception of the world state includes map and unit data, and is managed by a
collection of sensors that update world memory during each game update.

The ABL decision cycle runs asynchronously from the StarCraft update thread. The BWAPI
library provides callbacks for game start, update, and end events. During the game update
event, a number of sensors sense the game state and update the agent’s working memory.
EISBot includes sensors for the map, units, and type data. The agent’s perception of the game
world is shown in Figure 13. The map data describes the dimensions of the map, resource
locations, the height of map tiles, whether tiles are buildable or walkable, as well as regions
and chokepoints identified by the Brood War Terrain Analyzer [82]. The unit data describes
the locations, types, and owners of units on the map and several other attributes. To perform
actions in the game world, the agent sends commands to individual units, such as move, attack,
build, train, or research. The JNI-BWAPI library handles action synchronization by queuing up
events until the next game update and then dispatching batches of commands.

The ABL behaviors are supported by a middleware layer implemented in Java. The middle-
ware includes Java methods for executing mental acts, which are used mostly for modifying
working memory and performing complex game state queries. This layer is also used for tasks
including event generation, such as creating an event when a new enemy unit type is scouted,
and batch commands, such as ordering all units in a squad to attack a target location.

While the goal of the agent interface is to resemble the interface presented to human players
as closely as possible, it provides agents with two advantages. First, agents can directly query
game state across the entire map, without the need to pan the screen. Therefore, the current
agent does not support capabilities for focusing attention on a specific location of the map,
and does not extract game state using screen captures. Second, there is no restriction on the
number of actions that the agent can perform. Therefore, it may be possible for an agent to
abuse the interface in order to exploit the game, such as micromanaging large numbers of
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initial_tree {

spawngoal restockUnits();

...

}

parallel behavior restockUnits() {

with (persistent) subgoal trainInterceptors();

with (persistent) subgoal trainScarabs();

} �
Figure 14: An example of a daemon behavior in EISBot is the restockUnits behavior. The goal it

satisfies is spawned as a separate thread of execution and it continuously pursues subgoals
for training additional support units.

units in combat. The potential benefit of exploiting unlimited action commands is limited,
because it requires a large amount of attention and impacts only a subset of gameplay.

4.4 M U LT I - S C A L E I D I O M S

ABL provides several mechanisms for supporting multi-scale agents, including concurrent
goal pursuit, plan monitoring, and working memory. This section presents design patterns
for authoring ABL agents that operate in multi-scale domains. These idioms are useful for
developing agents that perform reasoning at multiple scales, manage resources across scales,
and focus on specific tasks as necessary. One of the goals of explaining these idioms is to
demonstrate their usefulness in building multi-scale AI, and to give illustrative, concrete
examples so that others can employ these idioms.

The main problems that arise when authoring multi-scale agents are dealing with messy
abstraction boundaries and handling concurrency across different scales of reasoning. My
approach for addressing these concerns is to utilize managers to handle gameplay at different
scales, and use message passing idioms to support communication across these scales. Several
design patterns are used in EISBot to manage concurrency including resource holds, behavior
locks, and priority queues. Applying these patterns enables the agent to use shared resources
across different scales.

I have applied the idioms presented here to author daemon behaviors that continuously
pursue goals independently of other tasks, managers that assume responsibility for a scale
of gameplay, message passing behaviors that produce and consume messages from working
memory, resource-locked behaviors that suspend execution to handle concurrency, and unit
subtasks behaviors that temporarily claim units for specific tasks.

4.4.1 Daemon Behaviors

A multi-scale system must be able to reason about several goals simultaneously. In ABL, this
can be achieved through the use of daemon behaviors. A daemon behavior is a behavior that
spawns a new goal that is then continuously pursued by the agent. This new goal can then
reason about a separate problem from the current thread of execution. Daemon behaviors in
ABL are analogous to daemon threads. In ABL, a daemon behavior can be created using the
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parallel behavior incomeManager() {

// production

with (persistent) subgoal pumpProbes();

with (persistent) subgoal buildAssimilators();

with (persistent) subgoal processExpansionRequests();

// harvesting

with (persistent) subgoal mineMinerals();

with (persistent) subgoal putWorkersOnGas();

with (persistent) subgoal pullWorkersOffGas();

// assign new tasks

with (persistent) subgoal freeWorkers();

with (persistent) subgoal detectIdleWorkers();

with (persistent) subgoal checkMinedOut();

} �
Figure 15: The income manager simultaneously pursues a variety of goals including producing addi-

tional worker units and resource facilities, harvesting minerals and vespene gas, and assigning
workers to perform new tasks.

spawngoal and persistent keywords. Spawngoal is used to create a new goal for expansion and
the persistent modifier is used within the spawned behavior to continuously pursue a subgoal.

In EISBot, daemon behaviors are used primarily for handling isolated tasks that mini-
mally impact other scales. An example daemon behavior in EISBot is shown in Figure 14.
The restockUnits behavior satisfies the restockUnits goal, which is added to the agent’s
ABT using a spawngoal step, and pursued in parallel with the agent’s other goals. The behavior
contains two steps that continuously pursue goals for training additional interceptors and
scarabs, which are support units for carriers and reavers. This behavior is included in EISBot,
because carriers and reavers cannot do damage unless support units are produced. One of
the ways in which this daemon behavior impacts other scales is that producing support units
requires spending minerals, which are utilized primarily by the production manager. Resource
holds and behavior locks are used to prevent this daemon behavior using minerals allocated
for other tasks.

4.4.2 Managers

Managers are a design pattern for conceptually partitioning an agent into distinct areas of
competence. A manager is a collection of behaviors that is responsible for handling a distinct
subset of an agent’s behavior, such as a scale of reasoning. Managers in an agent pursue goals
simultaneously and one of the ways managers can be implemented is using daemon behaviors.
The main distinction between managers and daemon behaviors is that managers are tightly
coupled with other managers in the agent. Each manager in EISBot implicitly defines an
interface that specifies which types of WMEs it receives as inputs and which types of WMEs it
generates as outputs.
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Authoring agents as a collection of managers provides many benefits. Managers enable a
modular design, where new implementations of managers can be swapped into an agent as
needed. It also enables concerns to be separated across scales, such as isolating decisions about
which structures to construct at the strategy scale from specific details about construction at
the production scale. Partitioning agent behavior into managers also enables domain experts
to author sophisticated behavior for specialized tasks, such as micromanagement, without
worrying about impacting other aspects of gameplay.

EISBot includes a manager for each of the scales of reasoning identified in Section 4.3. The
income manager is responsible for handling several tasks including producing worker units
and additional resource facilities, harvesting minerals and vespene gas, assigning workers to
new tasks, and releasing workers for use by other managers. A subset of the goals pursued by
the manager are shown in Figure 15. The income manager implements the following contract:

• Tasks

– Harvest Resources

– Manage Idle Workers

– Train Workers

– Construct Resource Facilities

• Inputs

– ExpansionRequestWME: Request to produce an expansion.

– WorkerRequestWME: Request to free a worker unit.

• Outputs

– IdleWorkerWME: a worker unit available for a new task.

• Holds

– ProbeStopWME: suspends the production of worker units.

– GasHoldWME: suspends workers from gathering vespene gas.

The income manager receives expansion requests and worker unit requests from other man-
agers and generates as output idle workers which can be assigned new tasks. The manager also
coordinates with other managers by acknowledging resource holds, such as the ProbeStopWME,
which requests for the manager to suspend worker production. The manager assumes control
of all worker units and is responsible for releasing workers for new tasks when requested from
other managers in the system.

4.4.3 Message Passing

In ABL several messaging idioms are possible by using working memory as an internal black-
board [44]. Common messaging patterns in ABL are the message producer and message
consumer patterns. A message producer is a behavior that adds a WME to working memory,
while a message consumer removes a WME from working memory after operating on its con-
tents. In ABL, WMEs can be added to working memory and removed by mental acts. Examples
of the message producer and consumer patterns are shown in Figure 16.
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sequential behavior messageProducer() {

mental_act {

BehavingEntity.getBehavingEntity().addWME(new MessageWME());

}

}

sequential behavior messageConsumer() {

precondition {

message = (MessageWME)

}

subgoal processMessage(message);

mental_act {

BehavingEntity.getBehavingEntity().deleteWME(message);

}

} �
Figure 16: ABL supports behaviors that produce and consume messages. This example shows a polling-

based consumer behavior, which can be selected for expansion only when a MessageWME is
placed in working memory.

A message producer is a behavior that adds a working memory element to the agent’s work-
ing memory. Posting WMEs to working memory enables a manager to request other managers
to perform actions and provides a method for decoupling decision making and action exe-
cution concerns. In EISBot, decisions about which units to train, buildings to construct, and
upgrades to research are selected by the strategy manager and the processes for executing
these decisions are delegated to the other managers by posting requests to working memory.

ABL supports polling-based and event-driven message consumers. The consumer behavior
in Figure 16 is an example of polling-based messaging, because the behavior can be selected
for expansion only when a MessageWME is present in working memory. In order for the behavior
to be selected for expansion, the agent needs to continuously pursue the subgoal to consume
messages. Another approach is event-driven consumers that wait for messages to be placed in
working memory. An example event-driven consumer is shown in Figure 17. The first step in
the behavior is a success test that suspends the execution of the behavior until a construction
request is added to working memory. In response to receiving a construction request, the
behavior binds the request to a behavior-scoped variable, processes the request, and then
removes it from working memory. The event-driven approach can be used for consuming
messages when there is a single behavior for accomplishing a goal, while the polling-based
approach is useful when consuming messages should not suspend the execution of a behavior.

While using message passing can cause agent authoring to become more complex, because
it adds a level of separation between action selection and execution, it provides several bene-
fits. Message passing provides a mechanism for serializing requests, as demonstrated by the
construction request processing behavior in Figure 17. In this example, construction requests
are queued up in working memory and dispatched one at a time by the behavior. In addition
to supporting communication across managers, message passing can be used in ABL agents to
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sequential behavior processConstructionRequests() {

ConstructionRequestWME request;

with (success_test {

request = (ConstructionRequestWME)

}) wait;

with (persistent when_fails) subgoal handleConstruction(request);

mental_act {

BehavingEntity.getBehavingEntity().deleteWME(request);

}

} �
Figure 17: An example of an event-driven message consumer in EISBot. The behavior waits for a con-

struction request, pursues the subgoal of handling the request until it succeeds, and deletes
the request.

sequential behavior putWorkersOnGas() {

AssimilatorWME assimilator;

with (success_test {

!(GasHoldWME)

assimilator = (AssimilatorWME numberWorkers<3)

}) wait;

subgoal assignWorkers(assimilator);

} �
Figure 18: An example of behavior locking in EISBot. The success test in this behavior blocks its execu-

tion when a GasHoldWME is in working memory.

manage control flow, prevent behaviors from blocking, and enable multiple behaviors to be
the source of messages, including external components.

4.4.4 Behavior Locking

One of the idioms used in EISBot to manage concurrency is behavior locking. Behavior locking
is a design pattern for suspending the execution of a behavior using working memory. An
example of behavior locking in EISBot is shown in Figure 18. The success test in this behavior
will suspend execution if a GasHoldWME is placed in working memory, preventing additional
worker units from being assigned to gathering vespene gas.

Behavior locking is one of many ways to suspend the execution of behaviors in ABL. ABL also
supports meta-behaviors, which modify the agent’s ABT at runtime [59]. Meta-behaviors can
be used in an agent to suspend or resume the execution of behaviors. While meta-behaviors
provide a powerful mechanism for modifying an agent’s active goals, behaviors in EISBot that
access shared resources can use WMEs as locks, which can be exposed to external processes.
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sequential behavior dragoonDance() {

DragoonWME unit;

with (success_test {

unit = (DragoonWME order==Attack task!=FIGHTER_FLEE damaged==true)

}) wait;

mental_act {

unit.setTask(FIGHTER_FLEE);

}

spawngoal dragoonFlee(unit, 24);

}

sequential behavior dragoonFlee(DragoonWME unit, int delay) {

act move(unit, fleeX, fleeY);

subgoal WaitFrames(delay);

mental_act {

unit.setTask(FIGHTER_ATTACK);

}

subgoal reengage(unit);

} �
Figure 19: Unit subtasks are used to implement micromanagement behaviors. The dragoonDance

behavior temporarily commands damaged units to flee from combat and then re-engage.

4.4.5 Unit Subtasks

EISBot combines high-level decision making with reactive unit-level tasks. This is achieved
through the use of unit subtask behaviors in ABL. Unit Subtasks are behaviors that temporarily
claim a unit to perform a specific task. In EISBot unit subtasks are used to perform microman-
agement behaviors, assign worker units to defend against rushes, and regroup squads into
tighter formations.

The general pattern for unit subtasks is to lock a specific unit, spawn a new goal for managing
the unit, and then release the lock on the unit. An example unit subtask behavior in EISBot
is shown in Figure 19. The dragoonDance behavior waits for a condition in which the agent
controls a damaged dragoon that is executing an attack order. When these conditions are
met, the behavior marks the unit as fleeing, and spawns a new goal for the dragoon to flee,
which causes the unit to move away from combat and then be marked as attacking before
re-engaging the enemy. Unit subtasks can also be used to issue commands to groups of units.
The defendBase behavior in EISBot spawns a goal for workers to defend the Nexus, which
recursively requests assistance from additional worker units until the Nexus is no longer under
attack.
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Figure 20: Several goals are pursued by the different managers in EISBot’s ABT. This visualization shows
how a behavior that satisfies the goal AttackEnemy communicates with other managers
including the tactics manager, which consumes TimingAttackWME messages and spawns
new squad monitor goals, and the income manager, which locks the PumpProbes goal when
a ProbeStopWME is placed in working memory.

4.5 D E S I G N PAT T E R N S I N E I S B O T

I have used the idioms presented in this section to author behaviors for EISBot. The agent’s
behavior is specified as 3,265 lines of ABL code, which includes 171 behaviors, and is supported
by thousands of lines of Java code that define sensors and actuators, implement working
memory elements, provide specialized queries for condition checks, and support mental acts.
During gameplay, the agent’s ABT reaches over 100 executing steps and continues to increase
as new units and squads are instantiated in the game. The base ABL agent plays at the level of
an amateur player and detailed results are presented in Chapter 7.

A visualization of a subset of EISBot’s active behavior tree is shown in Figure 20. The
initial_tree behavior starts several daemon behaviors that spawn the different managers.
The managers in the agent communicate by posting and removing WMEs from working mem-
ory. The figure shows the message passing design pattern being applied by the strategy and
tactics managers. The behavior satisfying the AttackEnemy goal posts a TimingAttackWME to
working memory during its execution, and the behavior satisfying the FormSquad goal removes
the WME from memory. Message passing is also used between the strategy and income man-
ager, but in this case the income manage does not consume the message and instead suspends
pursuit of the PumpProbes goal using the behavior locking pattern.

The visualization also shows that new daemon behaviors can be instantiated in response to
receiving a message. A new squad monitor goal is spawned each time a TimingAttackWME is
posted to memory. The behavior that satisfies this goal is responsible for grouping unassigned
combat units into a squad and monitoring units in the newly formed squad. This daemon be-
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havior handles both goals at the squad level, such as attacking opponent forces and regrouping,
and the individual unit level, such as the DragoonDance goal that micromanages individual
units. One of the benefits of using ABL to implement agent behavior is that individual units
as well as the formulation of squads are managed within a unified environment, enabling the
agent to dynamically assign units to roles based on the current situation.

By using managers, message passing, and unit subtasks, EISBot is able to reason about
different goals at different scales simultaneously, and to coordinate these gameplay scales in
order to achieve a coherent result. Managers for different scales can not only override one
another when necessary, but they can pass messages to influence or direct other managers
in the system. This leads ultimately to an agent that is responsive, flexible, and extensible: an
agent that is able to respond to highly specific circumstances appropriately without losing
track of long-term goals [108].

4.6 A P P L I C AT I O N T O R O B O C U P

The multi-scale idioms presented in this chapter can be applied to authoring agents outside
the genre of RTS games. This section explores how the idioms could be applied to a new task
using a top-down approach. One of the the multi-scale AI problems I identified is RoboCup
soccer, which involves decision making at individual, squad level, and team scales. In the
RoboCup Small-Size League, a team of six robots are managed by a centralized system5. An
objective of the league is to focus on multi-agent coordination. The role of the centralized
system is similar to the role of the commander in an RTS game in that it manages a team of
robots and can delegate actions to individuals. This league presents a multi-scale AI problem
and the multi-scale idioms introduced in this chapter can be leverage to design a system for
this task.

The Small-Size League provides an environment in which a team of robots are monitored by
a centralized system. Each robot can pursue individual goals, such as ball control, while the
focus is on multi-robot coordination. In this environment, reactive planning can be applied to
implement the centralized decision making system, while individual goals can be managed
using on-board systems. The role of the reactive planner in this configuration is to identify
tasks for each of the robots to perform, select joint interactions for squads of robots, and
manage team goals. To coordinate gameplay across each of these scales, I propose managers
for this task, identify message passing across managers, and discuss the potential uses of the
multi-scale idioms in a RoboCup agent.

The first step in applying the idioms to a new problem is to decompose gameplay into
distinct competencies. Each of these competencies is handled by a manager in the agent. For
RoboCup soccer, I propose the following managers:

• Offense Manager: responsible for controlling robots on offensive.

• Defense Manager: handles decision making for robots on defense.

• Keeper Manager: responsible for controlling the goal keeper.

• Coach Manager: handles position assignment and level of aggressiveness.

5 http://small-size.informatik.uni-bremen.de

http://small-size.informatik.uni-bremen.de
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Figure 21: The proposed RoboCup agent includes four managers. The coach manager assigns players to
each of the managers, and the other managers coordinate using message passing.

The keeper manager operates at the individual scale, the offense and defense managers operate
at the squad scale, and the coach manager operates at the team scale.

The next step is to identify cross-cutting concerns between the managers in the system.
In this environment, players can be utilized by the offense, defense, and keeper managers.
One way of managing players is to have the coach manager responsible for assigning players
to managers. An additional concern across managers is facilitating coordination between
defensive and offensive players. One way of facilitating coordination across squads is by having
managers express intended actions, such as passing or blocking players. The message passing
idioms can be used to express intent between players, using the following WMEs:

• PassIntentWME: The player intends to pass the ball to a teammate.

• GuardIntentWME: The player intends to guard an opponent.

The messages can be used to perform coordination actions across multiple units, which may
be handled by separate managers.

The third step is to identify player subtasks, in which players are temporarily assigned to
new individual tasks and are then re-assigned to a manager. Example subtasks in RoboCup
soccer include:

• Throw ins: The player leaves the squad to throw in the ball.

• Ball pursuit: The player races to retrieve the ball.

• Defense assist: The player assists a teammate in defending an opponent.
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These subtasks are short interactions that involve individual player tasks. They enable players
to pursue new roles for a duration before being reassigned to squad-level goals.

The daemon behavior and behavior locking idioms can also be applied to this environment.
One of the tasks that can be performed in isolation of other tasks is identifying candidate
passing lines for both teams. The daemon behavior pattern can be used to author behaviors
that monitor the field and place PassingLineWMEs in working memory when relevant. The
behavior locking pattern can be used to enable or disable behaviors based on the current game
context. For instance, a KeeperAttack behavior could be locked unless the coach manager
decides to pursue an aggressive strategy.

An overview of the proposed RoboCup agent is shown in Figure 21. The coach manager is
responsible for assigning players to units and selecting formulations and level of aggression.
The offense and defense managers each handle a squad of players. Players can express intent
to perform passing and guarding actions, which enable units across squads to coordinate
actions. This decomposition of gameplay enables the system to specialize in offensive and
defensive tasks, while still working towards team-level goals.

4.7 S U M M A R Y

One of the characteristics of RTS gameplay is that it requires the ability to simultaneously
manage several interconnected tasks while pursuing higher-level goals. StarCraft presents
players with multiple tasks to perform where there is not a strict separation between tasks and
the performance in each task impacts other tasks. I classify domains with these characteristics
as multi-scale domains. A multi-scale AI problem is an instance of a multi-task problem
in which actions are performed across multiple scales, tasks performed at each scale are
interrelated, and decision making and acting are performed in real-time.

I advocate reactive planning as a technique for authoring agents that operate in multi-
scale domains, because it provides several mechanisms necessary for multi-scale reasoning.
The ABL reactive planning language supports agents that perform concurrent goal pursuit,
dynamically spawn new goals during runtime, and manipulate working memory [59]. This
chapter describes reactive planning idioms that assist in the development of multi-scale
agents. These include design patterns for spawning daemon behaviors that handle isolated
tasks, organizing agents as a collection of managers that are each responsible for a scale of
reasoning, producing and consuming messages, locking behaviors, and dynamically creating
new goals to manage individual units and squads of units.

Each of these idioms is applied in EISBot, enabling the agent to concurrently pursue high-
level strategic goals while simultaneously reacting to unit-specific events. The agent includes
a manager for each scale of gameplay and facilitates coordination across managers using
message producer and consumer patterns. The resulting system performs actions at multiple
scales, and in real-time while pursuing the high-level goal of defeating opponents. While the
idioms presented here are demonstrated in the ABL reactive planning language, many of these
patterns are more general and can be applied to build multi-scale AI in other agent authoring
methodologies.
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L E A R N I N G F R O M D E M O N S T R AT I O N

StarCraft gameplay presents a number of challenges including decision making with imperfect
information and tracking the evolving meta-game. To perform at an expert level, players
employ adaptation, anticipation, and estimation capabilities in order to learn new strategies as
gameplay evolves and to reason about unknown current and future game states. My approach
for realizing these capabilities in an agent is to learn from gameplay demonstrations generated
by professional players.

There are several benefits to learning gameplay behavior from professional players. As new
strategies are discovered by players, they can be added to the agent’s collection of strategies
and reused when similar gameplay situations are encountered. Another benefit is that an
agent can make predictions about the actions a player will perform based on previous obser-
vations, and predictions can be made by analyzing the prior actions of individuals or groups
of players. Learning from demonstration also enables agents to harness collective intelligence
demonstrated by thousands of players, rather than specified by a small number of designers
[79].

Using demonstrations from players presents several challenges, because demonstrations
contain noisy and non-intentional actions. My approach for addressing these concerns is to
focus on learning individual gameplay scales, which reduces the amount of behavior that
needs to be learned from examples. Rather than attempt to learn all gameplay behavior
from demonstrations, I focus on learning specific aspects of gameplay that are intractable
or impossible for a domain expert to author. Decision making policies learned for individual
scales are integrated into the overall agent, which supports both hand-authored behaviors and
behaviors learned from demonstrations.

This chapter presents methods that enable adaptation, anticipation, and estimation capabil-
ities in EISBot. I discuss three different ways learning from demonstration is used in the system:
model training for classification and regression algorithms that perform strategy prediction,
case-based goal formulation for strategy selection and opponent modeling, and parameter
selection for optimizing a particle model that tracks opponent forces. These methods enable
the agent to learn new strategies, anticipate the actions of opponents, and build predictions
of candidate opponent locations. By utilizing these methods, EISBot emulates many of the
capabilities demonstrated by expert human players.

5.1 S T R AT E G Y P R E D I C T I O N

One of the ways that a player can gain an advantage over an opponent in StarCraft is to
anticipate the opponent’s actions and execute actions that counter the opponent’s plan of
action. In order to effectively pursue a strategy, a player needs to invest in production facilities,
upgrades, and forces. This process can take a substantial amount of time and transitioning to a
new strategy in the middle of a game can be detrimental to the player’s overall combat strength.
Therefore, selecting a strategy to enact involves a large degree of commitment. Detecting
an opponent’s strategic plan early on in the game can lead to several advantages, because
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the player can anticipate the type of army composition to expect, have an idea of when
new unit types will enter play, and predict when the opponent will be aggressive and attack.
These predictions can be used to select a strategy that counters the most likely plan of action
performed by the opponent. Often, thwarting an opponent’s plans requires executing counter
measures across multiple gameplay scales.

My work on developing methods for anticipating the actions of opponents is in part moti-
vated by capabilities demonstrated by StarCraft commentators. During a match, commentators
explain potential strategies that players are pursuing based on observed actions early on in
the game. Typically, players will perform actions with different timings based on the selected
strategy. These timings provide hints that commentators use to build predictions of the strate-
gies being executed by players. By studying large numbers of games and identifying when
specific actions are performed by players, commentators can determine which strategies are
being pursued with a high degree of certainty. The objective of the strategy prediction method
presented in this section is to emulate this anticipation capability, which is demonstrated by
both players and commentators.

I represent strategy prediction as an intent recognition problem, where the goal is to identify
which strategic plan an opponent is executing. Specifically, I model strategy prediction as a
classification problem, where the input to the model is a description of the actions performed
by a player and the output is a strategy label. To train the model, I collected thousands of
StarCraft demonstrations, in the form of replays, converted them into a feature vector repre-
sentation, and labeled them using a rule set that identifies common StarCraft strategies. This
method uses demonstrations as examples for training classification algorithms.

Each vector corresponds to a single game and encodes the timings of strategic actions per-
formed by each of the players. In this representation, each feature describes when a unit type,
building type, or upgrade is first produced. This encoding provides a compact representation
for reasoning about a player’s expansion of the tech tree. One of the advantages of this repre-
sentation is that it is possible to simulate different time steps during a game, by limiting the
maximum feature values. A disadvantage of this representation is that it captures actions at
only the strategy scale, and other scales such as economy can have a large impact on strategy
selection. I developed this encoding prior to the release of BWAPI, which limited the data
available for analysis to actions contained in game logs, as opposed to complete game state
information.

There are two main limitations of this classification method. First, the strategies that the
model can predict must be known ahead of time in order to label the feature vectors. Therefore,
this method does not support tracking the evolving meta-game, because the set of strategies it
can predict is fixed. Another limitation of this approach is that it trains models for identifying
strategies for a specific phase of the game, and supporting additional phases requires additional
rule sets. Approaches for overcoming these limitations include probabilistic models [26, 95]
and the opponent modeling method introduced in Section 5.2.1.

The feature vectors can also be used to train models that anticipate when specific unit types,
building types, or upgrades will be produced by a player. I represent timing prediction as a
regression problem, where the input to the model is a description of the actions performed by
the player, and the output is a prediction of when a specific action will be performed. These
predictions can be used by the system to anticipate when new unit types and building types
will be produced by opponents.
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Table 3: The Web crawler collected thousands of StarCraft replays. This table shows the number of
games collected for each of the race match-ups.

Type # Replays

Protoss vs. Protoss 542

Protoss vs. Terran 1,139

Protoss vs. Zerg 1,024

Terran vs. Terran 628

Terran vs. Zerg 1,150

Zerg vs. Zerg 1,010

Total 5,493

In this section, I present several off-line experiments performed in order to evaluate the
accuracy of different classification algorithms on the strategy prediction and timing prediction
tasks. These experiments evaluate the models in simulated perfect information and imperfect
information environments. The results show that an opponent’s strategy can be predicted with
a large degree of confidence, even when reasoning with imperfect information. Additionally, in
the early stages of the game multiple classification techniques are more accurate than the rule
set used to label the strategies, emulating the anticipating capability of players.

5.1.1 Data Collection

Several websites are dedicated to collecting and sharing StarCraft replays with the gaming
community, a large portion of which are from professional and high-ranked amateur matches.
Therefore, it is possible to mine these websites in order to build a collection of replays that is a
representative set of expert play in StarCraft. Due to the large number of replays available, it is
possible to learn a variety of strategies on several maps against different play styles.

I developed a web crawler to collect StarCraft replays from GosuGamers.net and TeamLiq-
uid.net, two popular StarCraft websites. The Web crawler downloaded collections of replays
from professional tournaments including BlizzCon, World Cyber Games, MBC Starleague
and the StarCraft Proleague. The crawler also collected replays from top-ranked players on
ICCup.com, a popular StarCraft ladder ranking system. I limited replay collection to 1 vs. 1
matches, because it is the most common game type for professional StarCraft matches. The
resulting number of game replays for the different race match-ups are shown in Table 3.

My goal is to build a general model for anticipating opponent actions in StarCraft. This
differs from previous work, which has focused on modeling single opponents [28] or work
that has been limited to at most a few hundred game logs [40]. By applying data mining to a
large number of game logs, I can develop predictions models that are not limited to a single
opponent, set of maps, or style of gameplay.
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Table 4: Game logs extracted from replays include user interface actions performed by the players. This
partial game log shows production actions from the start of a Terran vs. Zerg game.

Game Time

Player (minutes) Action

Player 2 0:00 Train Drone

Player 1 0:00 Train SCV

Player 2 1:18 Train Overlord

Player 1 1:22 Build Supply Depot

Player 1 2:04 Build Barracks

Player 2 2:25 Build Hatchery

Player 1 2:50 Build Barracks

Player 2 2:54 Build Spawning Pool

Player 1 3:18 Train Marine

Player 2 4:10 Train Zergling

5.1.2 Game Encoding

StarCraft replays are stored in a proprietary, binary format. I used a third-party replay analyzer1

to convert the replay files to game logs. A subset of an example log is shown in Table 4. The
game logs contain only user interface actions performed by each player. Game state is not
available in the logs, because replays are viewed by performing a deterministic simulation
based on the user interface actions. This limits how much state can be extracted from replays,
because information, such as the player’s current amount of resources, is not available for
analysis. However, the production of different unit types and building types can be extracted,
providing sufficient information to analyze a player’s build order.

The lack of game state provides a challenge for strategy prediction, because only the players’
user interface actions are available for analysis. One approach to overcome this limitation is
the use of a state lattice to capture the sequence in which actions are performed. State lattices
have been applied to opponent modeling in Wargus [83] and StarCraft [40]. A state lattice is a
directed graph without cycles, where each node represents a unique expansion of the tech tree.
State lattices are built in a similar manner to constructing decision trees (see [40] for a more
detailed explanation). State lattices are useful for predicting the next action given a sequence
of actions. However, state lattices are unable to predict when the next action will occur.

The goal of my representation is to capture the timing aspects of a player’s strategic decisions
in a game, enabling the prediction of distinct strategies and the timing of the opponent’s actions.
My feature-vector representation contains temporal features that record when the player
expands different branches of the tech tree. Each feature describes when a unit type, building
type, or upgrade is first produced. For each game log, two feature vectors are constructed. Each

1 http://lmrb.net/

http://lmrb.net/
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Table 5: A subset of a feature vector for a Zerg player shows that a hydralisk was first produced at 14
minutes and 51 seconds into the game, while no queens were produced.

Action Game Time

(Attribute) (Value)

Second Hatchery 2:42

Spawning Pool 3:07

Lair 5:48

Zergling 4:23

Zergling Speed 12:10

Hydralisk Den 12:52

Hydralisk 14:51

Lurker 15:39

Hydralisk Speed 16:48

Hydralisk Range 20:01

Queen 0:00

vector represents a single player’s actions for an entire game. Formally, the representation is a
feature vector where each feature f , for a player P , is defined as follows:

f (x) =
{

t : time when x is first produced by P

0 : x was not (yet) produced by P

where x is a unit type, building type or unit upgrade. Each race has a different number of
features, based on the tech tree and upgrades. For example, the Protoss representation contains
56 features. A subset of an example feature vector for a Zerg player is shown in Table 5. In this
example, the Hydralisk feature has a value of 14:51, which corresponds to the game time when
the first hydralisk was produced by the player, while the Queen feature has a value of 0:00,
because a queen was not produced by the player during the game. This encoding, while not
requiring complete information about the game state, captures both the tech tree expansion
and timing of a player’s strategy. This representation varies from related work which encodes
single game traces as several cases [72, 103].

After encoding the replays into a feature vector representation, I analyzed the timing dis-
tributions of several of the features. For some race match ups, the strategy that a player is
pursuing can be anticipated based on the timing of a single feature. For example, there is a
wide variety of timings exhibited by Zerg players producing their first spawning pool versus
Terran opponents, as shown in Figure 22. The spawning pool is a tier 1 production building that
enables a player to produce combat units and is often delayed in order to focus on economy.
The figure shows three peaks in timing production that correspond to players executing 9-pool,
over-pool, and 12-hatch strategies, where 9-pool is an aggressive build order, over-pool slightly
delays combat units to improve economy, and 12-hatch is an economy focused build order.
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Figure 22: The timing distribution of Spawning Pool production in Zerg versus Terran games shows that
players typically follow three openings, and prefer expansion focused build orders.
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Figure 23: The timing distribution of Factory production in Terran versus Protoss games shows little
variation, indicating that Terran strategies do not branch until after factory production.
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Table 6: The strategy distributions for Protoss show that several different strategies are used based on
the opponent race.

Versus Versus Versus

Strategy Protoss Terran Zerg

Fast Legs 1% 1% 10%

Fast DT 18% 16% 8%

Fast Air 1% 1% 20%

Expand 22% 31% 46%

Reaver 9% 12% 3%

Standard 27% 32% 1%

Unknown 22% 7% 12%

While each of these timings can develop into different strategies later in the game, they clearly
indicate whether the player is pursuing an aggressive strategy early in the game.

There are other features where the timing indicates little information about the player’s
strategy. The timing distribution for factory production in Terran versus Protoss games is shown
in Figure 23. The factory is a tier 2 production building that enables players to produce combat
units useful for defending against Protoss opponents. This timing distribution indicates that
the general trend in Terran versus Protoss gameplay is to follow a fixed opening and then vary
once a factory has started construction. In order to determine which strategy a Terran player is
pursuing, it is necessary to incorporate the timings of several different buildings, units, and
upgrades.

5.1.3 Labeling Replays

Each of the feature vectors is labeled with a strategy using rules based on analysis of expert play.
A different rule set was used for labeling each of the different races. Each rule set is designed to
capture the tier 2 strategies of a race. The rule sets label logs with strategies based on the order
in which building types are produced. The rule set for labeling Protoss strategies is shown in
Figure 24. In the figure, tier 1 strategy refers to strategic decisions made in the early stages of
the game. The strategy of the player is not labeled until a tier 2 strategy decision is made, such
as building a Stargate, which is labeled as a “Fast Air” strategy. Six strategies were created for
each race. If a game does not fit any of the rules, then the strategy is labeled as unknown.

The rule sets were designed to capture a wide variety of strategies in StarCraft. Distributions
of the builds versus different races are shown for Protoss in Table 6. In certain match-ups, such
as Protoss versus Terran, a wide variety of strategies are commonly used. However, strategy
prediction is easier in some match-ups where a single strategy dominates. For example, the
two-hatchery mutalisk strategy is used in over 70% of Zerg versus Zerg games.
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Zealot Legs 
(Fast Legs)

Archives
(Fast DT)

Support Bay
(Reaver)

Observatory
(Standard)

Nexus
(Expand)

Stargate
(Fast Air) Robotics BayCitadel

Tier 1
Strategy

Figure 24: The rule set for labeling Protoss replays includes six strategies. The tree for labeling strategies
is traversed by selecting the first building produced in the child nodes.

5.1.4 Build-Order Prediction

I represent strategy prediction as a multi-class classification problem. The goal of the classifi-
cation model is to predict the strategy an opponent is pursuing at different stages throughout
the game. I applied the following algorithms to classify opponent build orders:

• J48 – C4.5 decision tree [86].

• k-NN – Nearest neighbor [2].

• NNge – Non-nested generalized exemplars [57].

• LogitBoost – Additive logistic regression [34].

I used the implementations of these algorithms provided in the Weka [112] toolkit. The Log-
itBoost algorithm was configured to use 100 iterations and a shrinkage rate of 0.5. All of the
other algorithms used the default settings. Ten-fold cross validation was performed for all of
the experiments.

In addition to the Weka algorithms, I evaluated two additional classifiers. The rule set
classifier predicts strategies using the exact rules used to label the strategies. Since the replays
are labeled based on tier 2 strategies, this classifier is not accurate until the opponent’s strategy
has been executed. I also implemented a state lattice classifier based on Hsieh and Sun’s
approach for comparison [40].

The algorithms were evaluated at different time steps throughout the game. I simulated
different time steps by setting all features with a value greater than the current game time to 0.
Time τ is simulated in a replay by applying the following transformation to the feature vector:

f (x,τ) =
{

f (x) : f (x) ≤ τ

0 : otherwise

Consider the following feature vector: f =< 0,1000,2000,3000 >. After applying the transfor-
mation with τ= 1500, the resulting vector would be: f =< 0,1000,0,0 >. This transformation is
applied to training data as well as the test data. The precisions of the algorithms versus game
time for strategy prediction are shown in Figure 25 and Figure 26. A comprehensive listing of
the performance of the algorithms at five and ten minutes game time is shown in Table 7.

The results show that different algorithms are better at different stages of the game. The
instance-based algorithms (NNge and k-NN) perform well in the initial stages of the game, but
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Table 7: Precision of the strategy prediction models at 5 minutes and 10 minutes game time.

5 minutes 10 minutes

NNge J48 Boosting Lattice NNge J48 Boosting Lattice

PvP 0.49 0.43 0.47 0.39 0.80 0.81 0.86 0.56

PvT 0.68 0.63 0.61 0.45 0.89 0.91 0.94 0.62

PvZ 0.63 0.63 0.66 0.62 0.85 0.87 0.87 0.44

TvP 0.76 0.66 0.63 0.45 0.81 0.80 0.94 0.51

TvT 0.82 0.75 0.77 0.57 0.85 0.81 0.92 0.56

TvZ 0.91 0.88 0.90 0.86 0.94 0.90 0.86 0.60

ZvP 0.53 0.56 0.60 0.48 0.84 0.85 0.87 0.49

ZvT 0.53 0.50 0.49 0.41 0.87 0.91 0.89 0.65

ZvZ 0.83 0.82 0.83 0.84 0.94 0.95 0.95 0.82

Avg. 0.69 0.65 0.66 0.56 0.86 0.87 0.91 0.58
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Figure 25: The precision of the strategy prediction classifiers show that instance-based models initially
performed best, while boosting approaches outperformed the other models later in the game.
This figure shows the precision of the models in Protoss versus Terran games.
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Figure 26: The performance across different strategy prediction classifiers was less noticeable for Protoss
versus Protoss games.

degrade in the later stages of the game, while boosting performs poorly initially and improves in
the later stages. All of the machine learning algorithms outperformed the state lattice classifier.

Interestingly, the machine learning algorithms had higher precision than the exact rule set
during the first 8 minutes of the game. While the precision of the rule set classifier eventually
reaches 100%, there is a noticeable difference between this classifier and the machine learning
algorithms in the early stages of the game. These results indicate that the algorithms have
“foresight” of the opponent’s strategy. Here, I define “foresight” to be the area between the
classification algorithm and the rule set. Given this metric, the machine learning algorithms
clearly outperform the state lattice classifier.

A second set of experiments analyzed the effects of noise on the classification algorithms.
These experiments simulate the fog-of-war in StarCraft, which limits visibility to portions of
the map in which the player controls units. Delayed scouting can be simulated by adding noise
to features, while inability to scout an opponent’s base can be simulated by transforming a
subset of the features.

The first imperfect information experiment added a uniform distribution of noise to individ-
ual features, which simulates delayed scouting in StarCraft. This transformation is applied by
incrementing the value of each feature: f ′(x) = f (x)+U (0,n), where n represents a delay in
scouting. The results for this noise transformation are shown in Figure 27. All of the algorithms
degrade in precision as more noise is applied to the test data set. However, the precision of the
k-NN algorithm does not degrade as quickly as the other algorithms. In this experiment, the
precision of the state lattice decreased much more rapidly than the other algorithms.

The second imperfect information experiment tests the effects of missing features on the
classification algorithms. Attributes were randomly set to 0, based on a missing attribute
probability. This simulates a player that is unable to scout an opponent’s base in StarCraft. The
results for the missing attribute transformation are shown in Figure 28. The precision of the
machine learning algorithms decreased linearly with respect to the ratio of missing attributes,
while the precision of the state lattice classifier degrades to that of a random classifier after
20% of attributes are missing. The results of these two experiments indicate that the machine
learning algorithms are more tolerant of noisy and missing features than the state lattice
classifier.
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Figure 27: The first imperfect information experiment simulated delayed scouting by applying noise
uniformly to individual attributes.
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Figure 28: The second experiment simulated inability to scout an opponent. The missing attribute ratio
specifies the probability that an attribute will be set to 0.
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5.1.5 Timing Prediction

I represent timing prediction as a regression problem. The goal of the regression model is
to predict when a specific unit type, building type, or upgrade type will be produced by the
opponent. I applied the following algorithms to the timing prediction task:

• ZeroR - Estimates the mean.

• LinearRegression - Regression with Akaike criterion [4].

• M5’ – Inducing model trees [102].

• AdditiveRegression - Stochastic gradient boosting [35].

The additive regression algorithm was configured to use 100 iterations and a shrinkage rate
of 0.5. All of the other algorithms used the default settings. Ten-fold cross validation was
performed for all of the experiments.

The regression models are applied to the task of predicting the timing of individual features.
The training and test data sets were transformed prior to training the algorithms. A trans-
formation was applied to the features to simulate the game state prior to the production of
the individual feature. The following transformation was applied for each feature, y , in the
representation:

f (x, y) =
{

f (x) : y 6= x, f (x) ≤ f (y)

0 : otherwise

This transformation sets the feature vector to the game state just before the unit type, build-
ing type or unit upgrade, y , was produced. Consider the following feature vector: f =<
0,1000,2000,2000 >. These features correspond to worker timing, barracks timing, depot
timing, and marine timing. The transformation is applied for a specific feature, such as depot
timing. In this example, f (y) = f (depot) = 2000, and applying the transformation for the depot
timing feature would result in the following vector: f =< 0,1000,0,2000 >.

A subset of the regression results for Zerg versus Terran games is shown in Table 8. The M5’
algorithm performed the best on almost all of the features. The algorithms perform poorly on
the Zergling Speed feature, which has a standard deviation of 8 minutes. While M5’ predicted
action timing with the smallest error, linear regression performed well on highly correlated
features. For example, linear regression is able to accurately predict observer timing, because
there is a strong correlation between constructing an observatory and producing an observer.

The M5’ algorithm was able to predict the timing of the lair and hive structures with a mean
error of less than 40 seconds. A lair enables Zerg players to build tier 2 units and buildings,
while a hive enables Zerg players to build tier 3 units and buildings. Therefore, M5’ can predict
when the player is upgrading to the next tier of the tech tree with an average error of less than
40 seconds.

5.1.6 Conclusion

Players can gain an advantage in RTS games by identifying opponent strategies as they are being
executed and developing counter measures. Commentators demonstrate the capability to
anticipate strategies and can predict which build order a player is pursuing based on the timing
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Table 8: Results from the timing prediction tasks show that M5’ performed best on almost all of the
features. These values show the average difference between predicted and actual action timings,
in minutes and seconds.

Linear Additive

Action ZeroR Regression M5’ Regression

Spawning Pool 0:28 0:17 0:04 0:06

Zergling 0:42 0:48 0:25 0:32

Zergling Speed 4:02 3:54 3:28 2:49

Second Hatchery 0:44 0:35 0:19 0:21

Hydralisk Den 2:15 1:24 0:45 0:52

Lair 1:02 0:55 0:33 0:37

Hive 4:40 0:45 0:39 0:57

Consume 4:55 0:32 0:27 0:55

of specific actions performed in the game. This section presents an approach for emulating
this capability by collecting thousands of gameplay demonstrations, encoding the actions
performed in the games into feature vectors, and training classification and regression models.
These models are applied to the tasks of predicting an opponent’s build order and timing of
production actions. The resulting models exhibit foresight and are capable of identifying which
strategy a player is executing with a high confidence.

There are several limitations of my classification approach for recognizing strategies. In
order to label the feature vectors, it is necessary to specify a fixed set of rules and strategies.
This prevents the system from tracking the evolving meta-game, where new strategies are
constantly discovered by players. An additional issue is that the rule set applies to a specific
phase of the game and anticipating opponent actions for different phases in the game requires
applying additional rule sets. The models also rely on knowing the precise timings of actions
executed by the opponent, which can lead to the classifiers overfitting the data. While the
methods presented here help agents to anticipate what to expect, they do not provide ways in
which to respond.

5.2 S T R AT E G Y L E A R N I N G

Real-time strategy games have an evolving meta-game in which new strategies are constantly
being discovered and exploited by players. The motivation for exploring new strategies is
to find new strategies that are effective against current strategies that are popular, develop
novel build orders that catch opponents off guard, and exploit new maps released by the
community. Adaptation is a necessary capability for expert StarCraft gameplay, because the
pool of strategies employed by players is constantly changing. Performing well in StarCraft
requires not only the ability to learn new strategies as the meta-game evolves, but also the
ability to learn to recognize new opponent strategies. This is a form of meta-game adaptation,
where players learn new strategies across several gameplay sessions.
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My approach for implementing an adaptation mechanism in a StarCraft agent is to use
gameplay demonstrations to track the evolving meta-game. As new strategies are performed
by players, new replays are produced containing the actions necessary to execute them. To
harness these demonstrations, I use the replays to formulate new strategic goals for the agent
to pursue. Using demonstrations to select goals for the agent to accomplish eliminates the
need to author specific strategies in the agent, reducing the amount of hard-coded behavior
in the system. My approach uses a library of cases to perform goal formulation, which I refer
to as case-based goal formulation [106]. I use case-based goal formulation in my system for
two tasks: strategy selection and opponent strategy recognition. This approach enables the
agent to select new strategic goals at any time based on expert gameplay demonstrations and
emulates the adaptation capability shown by professional players.

One of the goals of case-based goal formulation is to overcome many of the limitations
of the strategy prediction method presented in the previous section. While the strategy pre-
diction approach was capable of identifying the opponent’s strategy with a high degree of
confidence early in the game, it relied on domain engineering a rule set for labeling strategies
and was limited to a fixed set of strategies during a specific phase of the game. Case-based
goal formulation is a more general approach for intent recognition that enables the agent to
formulate an anticipation of the opponent’s strategic goal at any time during the game. The
main disadvantage of case-based goal formulation over the classification approach to strategy
recognition is that it is an instance-based method that formulates goals based on retrieving a
single gameplay demonstration, while the classification method is trained on a large number
of demonstrations.

Case-based goal formulation exploits the temporal structure of demonstrations to select
goals to pursue. The general idea of the approach is to infer game states in a demonstration
as the goals of a player. For example, if a player reaches a game state in which air units are
produced, my approach infers that during gameplay the player formulated and accomplished
a goal of producing air units. One of the advantages of this approach is that it is possible to
infer the goals of a player with different planning window sizes, by retrieving game states
from different time steps in a demonstration. Game states reached early in the game are
goals pursued with a small planning window size, while states reached later are goals with a
large planning window size. Case-based goal formulation provides a mechanism for strategy
learning, because it can select new goals for the agent to pursue at any time, and it can be
applied to the opponent state to anticipate future opponent state.

One of the limitations of this approach is that the agent is limited to executing and anticipat-
ing strategies that are included in the case library. This means that the agent’s pool of strategies
is fixed, unless the case library is actively maintained. Additionally, the fixed strategy pool
means that the agent will never execute a novelty build order. Another limitation is that the
agent can anticipate only strategies included in the library; if the opponent performs a new
build order, the case library may not provide sufficient examples for managing the novelty
strategy. One way of overcoming these limitations is to apply methods for maintaining the case
library as the strategy space evolves, but this topic is outside the scope of this work.

This section introduces case-based goal formulation and applies it to the task of predicting
an opponent’s future game state. I present the Trace algorithm, which uses the temporal
structure of demonstrations to infer the goals of a player. The case representation for this
approach builds on the feature vector representation from the previous section and also
introduces features for tracking the number of different unit types produced during a game.
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To evaluate the approach, I performed a number of off-line experiments that predict the
opponent state with various planning window sizes. As a benchmark, I compare the results to
classification based approaches for intent recognition.

5.2.1 Case-Based Goal Formulation

Case-based goal formulation is a technique that retrieves goals from a library of cases. It is
similar to sequential instance-based learning [27], but selects goals rather than actions. I define
case-based goal formulation as follows:

The agent’s goal state, g , is a vector computed by retrieving the most similar case,
q , to the world state, s, and adding the difference between q and its future state,
q′, which is the state after n actions have been applied to q .

Formally:

q = argmin
c∈L

distance(s,c)

g = s + (q′−q)

where g is a numerical vector representing the goal state, c is a case in the case library, L, and
the distance function is a domain independent or domain specific distance metric.

I refer to the number of actions needed to achieve the generated goal state as the planning
window size. The planning window size is a parameter that specifies how far to look ahead
during the retrieval process. A small planning window is useful for domains where plans are
invalidated frequently, while a large planning window should be used in domains that require
long-term plans. I discuss tuning this parameter in Chapter 6.

5.2.2 Trace Algorithm

The Trace algorithm is a technique I developed for implementing case-based goal formulation
using traces of world state. A trace is a list of tuples containing world states and actions, and is
a single episode demonstrating how to perform a task in a domain. For example, a game replay
is a trace that contains the current game state and player actions executed in each game frame.
The algorithm utilizes a case representation where each case is an unlabeled feature vector
that describes the game state at a specific time.

Cases from a trace are indexed using a time step feature. This enables efficient lookup of q′
once a case, q , has been selected. Assuming that the retrieved case occurred at time t in the
trace, q′ is defined by the world state at time t +n. Since the algorithm uses a feature vector
representation, g can be computed as follows:

q = qt

q′ = qt+n

g (x) = s(x)+ (q′(x)−q(x))

where x is a feature in the case representation. The Trace algorithm operates by retrieving the
most similar case, finding the future state in the trace based on the planning window size, and
adding the difference between the retrieved states to the current game state.
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Consider an agent with a planning window of size 2, a Euclidean distance function, and the
following game state:

s =< 3,0,1,1 >
There is a single trace, consisting of the following cases:

q1 =< 2,0,0.5,1 >

q2 =< 3,0,0.7,1 >
q3 =< 4,1,0.9,1 >
q4 =< 4,1,1.1,2 >

The Trace algorithm would proceed as follows:

1. The system retrieves the most similar case: q = q2

2. q′ is retrieved: q′ = q2+n = q4

3. The difference is computed: q′−q =< 1,1,0.4,1 >

4. g is computed: g = s + (q′−q) =< 4,1,1.4,2 >

After goal formulation, the agent’s goal state is set to g .
One of the ways of overcoming the brittleness of placing too much emphasis on a single

trace is to formulate goals from multiple traces. The MultiTrace algorithm is an extension of
the Trace algorithm in which multiple cases are retrieved when formulating a goal state. The
technique is similar to k-NN, where the k most similar cases are retrieved. The intention of
combining multiple traces for goal formulation is to deal with new situations that may not be
present in the case library. The algorithm is defined as follows:

w j = e−distance(s,q j )

k∑
j=1

w j = 1

g (x) = s(x)+
k∑

j=1
w j ∗ (q j ′(x)−q j (x))

where w j is the weight assigned to a case. Each of the k retrieved cases is assigned a weight
based on the distance to the current goal state. The weights are then normalized. The cases are
combined into a single goal state by multiplying each retrieved case by its weight.

5.2.3 Case Representation

My case representation is a feature vector that tracks the number of units and buildings that a
specific player controls. There is a feature for each unit and building type and the value of each
feature is the number of that type that have been produced since the start of the game. This
approach encodes only a single player’s state. The system encodes the agent’s state for strategy
selection and the opponent’s state for opponent modeling.
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I collected thousands of professional-level replays from community websites and converted
them to my case representation. Replays were converted from Blizzard’s proprietary binary
format into text logs of game actions using a third-party tool, as discussed in Section 5.1.2. The
resulting case library consists of 1,831 traces and 244,459 cases. The cases are extracted directly
from the actions contained in replays and not from recorded game states, which means that
this representation does not track unit deaths. One way of capturing complete game state
information while generating the case library is to play the replays in StarCraft and extract
game state information each time a production event occurs [105].

A subset of an example trace is shown in Table 4. An initial case, q1, is generated with all
values set to zero, except for the worker unit type (SCV) and command center type, which are
set to 4 and 1 respectively, because the player begins with these units. A new case is generated
for each action that trains a unit or produces a building. The value of a new case is initially set
to the value of the previous case, then the feature corresponding to the train or build action is
incremented by one. Considering a subset of the features (# SCVs, # Supply Depots, # Barracks,
# Marines), the example trace would produce the following cases:

q1 =< 4,0,0,0 >

q2 =< 5,0,0,0 >
q3 =< 5,1,0,0 >
q4 =< 6,1,0,0 >
q5 =< 6,1,1,0 >
q6 =< 6,1,1,1 >

The actions in the example trace are Train SCV, Build Depot, Train SCV, Build Barracks, and
Train Marine. The initial case, q1, corresponds to the starting game state and each new case is
generated for each unit or structure produced by the player.

I also explored case representations that include additional features used for case retrieval,
but not for computing goal states. These additional features are used in the distance function
and enable better situation assessment in the retrieval process. The features are based on the
encoding presented in the previous section, where each feature specifies the time that a new
unit, structure, or upgrade is first produced. I evaluated feature sets that include the player’s
timings, the opponent’s timings, and both players’ timings of actions in addition to the unit
count features.

The retrieval process uses Euclidean distance to compute the similarity between different
cases. To convert the unit count and timing features to similar ranges, the timing features were
converted to correspond to game time in minutes.

5.2.4 Evaluation

I evaluated case-based goal formulation by applying it to opponent modeling in StarCraft.
Opponent modeling was performed by applying goal formulation to the opponent’s state. Given
the opponent’s current state, s, an opponent modeling algorithm builds a prediction of the
opponent’s future state, p, by applying n actions to s. This prediction is then compared against
the opponent’s actual state n actions later in the game trace, g . All experiments performed
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computed error using the root mean squared error (RMSE) between the predicted goal state, p,
and the opponent’s actual goal state, g .

Experiments used 10-fold cross validation. A modified version of fold-slicing was utilized
to prevent cross-fold trace contamination, where cases from the same trace are present in
both training and testing datasets. To get around this problem, all cases from a trace are
always included in the same fold. I had sufficient training data for the folds to remain relatively
balanced.

I compared case-based goal formulation against classification algorithms. The classification
case representation contains an action in addition to the goal state, which serves as a label for
the case. In the example cases above, q1 would be labeled with the action Train SCV and q2

would be labeled with the action Build Depot. The following algorithm was applied to build
predictions with a planning window of size n:

p = goal(state g, int n)

if (n == 0) return g

else return goal(g + c(g), n-1)

where goal is the formulation function, c(g ) refers to classifying an instance, and g +c(g ) refers
to updating the goal state by applying the action contained in the case. The goal function runs
the classifier, updates the state based on the prediction, and repeats until n classifications have
been performed. I evaluated the following algorithms:

• Null - predicts p = s and serves as a baseline.

• IB1 - uses a nearest neighbor classifier [2].

• AdaBoost - uses a boosting classifier [33].

• Trace - uses the Trace algorithm with a Euclidean distance metric.

• MultiTrace - uses the MultiTrace algorithm with a Euclidean distance metric.

Weka implementations were used for the IB1 and AdaBoost classifiers [112].
The first experiment evaluated opponent modeling on various planning window sizes at

different stages in the game. The different stages in the game refer to how many train and build
actions have been executed by the player so far. Different stages in the game were simulated by
building predictions for the cases indexed at a specific time from the traces in the test dataset.
Opponent modeling was applied to predicting a Terran player’s actions in Terran versus Protoss
matches. Results from the first experiment are shown in Figure 29. The results show that the
Trace and MultiTrace algorithms outperformed the classification algorithms on all planning
window sizes. Detailed results for various planning windows sizes are shown in Table 9.

The second experiment evaluated the effects of adding additional features to the case
representation. The additional features specify the game time in which the player first produces
a specific unit type or building type [104]. There is a timing feature for each of the unit count
features. The different feature sets include the unit count feature set, the addition of the player
timing features (timing), the addition of the opponent timing features (opponent timing),
and the addition of both player and opponent timing features (both timing). Results from the
second experiment are shown in Figure 30. The results show that adding any of the additional
feature sets greatly improves the performance of anticipating opponent actions.
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Figure 29: The error rates of the algorithms on various planning window sizes show that the Trace and
MultiTrace algorithms performed best. In this figure, the horizontal axis refers to the number
of train and build actions that have been executed by the player.
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Figure 30: The error rates of the Trace and MultiTrace algorithms improved when utilizing additional
features. Each of the algorithm were evaluated with four different feature sets that include
the original features and additional timing features.
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Table 9: The average errors of the Trace and classification algorithms on various planning window sizes
show that the Trace algorithm with timing features performed best.

Window Size

5 10 20 50

Null 2.94 5.19 9.43 20.9

IB1 1.38 2.06 3.53 9.64

AdaBoost 1.86 2.81 4.40 8.18

Trace 0.98 1.44 2.44 4.87

MultiTrace 0.93 1.32 2.12 4.12

Trace w/ Timing 0.84 1.17 1.87 3.74

5.2.5 Conclusion

New strategies are constantly being developed in StarCraft, which results in an evolving meta-
game. In order to play at an expert level, it is necessary to adapt and learn new strategies
as gameplay advances. One way of emulating this capability in an agent is to learn from
demonstrations. As new strategies are explored by players, additional demonstrations can be
added to the agent’s collection of gameplay examples, enabling the system to learn to execute
and anticipate new strategies.

I explored an approach for implementing strategy learning by representing learning as
an opponent modeling task, where the goal is to predict the future state of an opponent.
I presented the Trace and MultiTrace algorithms, which exploit the temporal structure of
demonstrations to anticipate future game states. The algorithms were able to outperform two
classification approaches and improved in performance when utilizing additional features
that describe the timing of actions. The MultiTrace algorithm performed best in the early
stages of the game when strategies are most divergent, while adding timing features resulted in
similar performance between the Trace and MultiTrace algorithms. The resulting technique,
case-based goal formation, can be used to select goals states for an agent to pursue at any
time during the game and to anticipate the future state of the opponent with various planning
window sizes.

The current version of the system uses a batch process to learn a collection of strategies
from demonstrations. In order to track the evolving meta-game of StarCraft, the demonstration
library needs to be updated as new strategies are popularized by players. This process involves
case library maintenance, which my system does not capture. One way of implementing this
capability is to apply methods for identifying unusual games [26], and updating the library as
necessary.

5.3 S TAT E E S T I M AT I O N

StarCraft enforces imperfect information through a fog-of-war that limits a player’s visibility
to portions of the map where units are controlled. To acquire additional game state informa-
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tion, players actively scout opponents to uncover the locations of enemy forces and bases.
Observations of enemy forces are used by players to identify candidate locations to attack and
determine which locations need to be defended. Professional players demonstrate estimation
capabilities, by tracking opponent forces and moving units into defensive positions before
attacks are launched.

Tracking opponent forces is a necessary capability for expert RTS gameplay. In order to work
towards realizing this capability in an agent, I investigate the task of maximizing the amount of
information available to an agent given game state observations. To accomplish this goal, I
propose a particle-based approach for tracking the locations of enemy units that have been
scouted. My approach is inspired by the application of particle filters to state estimation in
games [10]. It includes a movement model for predicting the trajectories of units and a decay
function for gradually reducing the agent’s confidence in predictions. One of the challenges
in RTS games is accurately identifying the location and size of opponent forces, because
opponents may have multiple, indistinguishable units.

To select parameters for the particle model, I represent state estimation as a function opti-
mization problem. To implement this function, I mined a corpus of expert StarCraft replays
to create a library of game states and observations, which are used to evaluate the accuracy
of a particle model. This process uses gameplay demonstrations in order to perform model
optimization. Representing state estimation as an optimization problem enabled off-line evalu-
ation of several types of particle models. My approach uses a variation of the simplex algorithm
to find near-optimal parameters for the particle model. This section provides an overview of
the particle model, update process, and model training approach as well as experiments that
evaluate that ability of the model to track previously observed enemy units.

5.3.1 Particle Model

The goal of my model is to accurately track the positions of enemy units that have been
previously observed. My approach for achieving this task is based on a simplified model
of particle filters. I selected a particle-based approach instead of a space-based approach
based on several properties of RTS games. It is difficult to select a suitable grid resolution for
estimation, because a tile-based grid may be too fine, while higher-level abstractions may be
too coarse. Also, the model needs to be able to scale to hundreds of units. Finally, the particle
model should be generalizable to new maps.

The particle model is inspired by particle filters, but instead uses a single particle to track
the position of a previously encountered enemy unit, instead of a cloud of particles. A single
particle per unit approach was chosen to simplify the culling process, because an opponent
may have multiple, indistinguishable units. Since an agent is unable to identify individuals
across multiple observations, the process for culling candidate target locations becomes non-
trivial. A side effect of using a cloud of particles for tracking indistinguishable units is that the
agent may overestimate the threat of a region, and this problem is present in a single particle
formulation as well. I address this problem by adding a decay function to particles, which
gradually reduces the agent’s confidence in estimations over time.

Particles in the model are assigned a class, weight, and trajectory. The class corresponds to
the unit type of the enemy unit. My system includes the following classes of units: building,
worker unit, ground attacker, and air attacker. Each class has a unique set of parameters used
to compute the trajectories and weights of particles.
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Figure 31: Particle trajectories are computed using a linear combination of vectors. The movement
vector captures the current trajectory, while the target vector factors in the unit’s destination
and the chokepoint vector factors in terrain.

Particles are assigned a weight that represents the agent’s confidence in the prediction. A
linear decay function is applied to particles in which a particle’s weight is decreased by the
decay amount each update. Particles with a weight equal to or less than zero are removed
from the list of candidate target locations. Different decay rates are used for different classes of
particles, because predictions for units with low mobility are likely to remain accurate, while
predictions for units with high mobility can quickly become inaccurate.

Each particle is assigned a constant trajectory, which is computed based on a linear combi-
nation of vectors. A visualization of the different vectors is shown in Figure 31. The movement
vector is based on observed unit movement, which is computed as the difference between
the current coordinates and previous coordinates. The model also incorporates a chokepoint
vector, which enables terrain features to be incorporated in the trajectory. It is found by com-
puting the vectors between the unit’s coordinates and the center point of each chokepoint
in the current region, and selecting the vector with the smallest angle with respect to the
movement vector. The target vector is based on the unit’s destination and is computed as the
difference between the destination coordinates and current unit coordinates. Computing the
target vector requires accessing game state information that is not available to human players.

The trajectory of a particle is computed by normalizing the vectors to unit vectors, multi-
plying the vectors by class-specific weights, and summing the resulting vectors. My model
incorporates unique movement and target weights for each particle class, while a single weight
is used for the chokepoint vector.

5.3.2 Update Process

The particle model begins with an initially empty set of candidate target locations. As new
units are encountered during the course of a game, new particles are spawned to track enemy
units. The model update process consists of four sequential steps:
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Figure 32: The particle model tracks units that have been observed by scouting and attacking forces.
This figure shows the estimations of enemy forces during the early game (left), mid game
(middle), and late game (right) phases.

• Apply movement: updates the location of each particle by applying the particle’s trajec-
tory to its current location.

• Apply decay: linearly decreases the weight of each particle based on its class specific
decay weight.

• Cull particles: removes particles that are within the agent’s vision range or have a less
than zero weight.

• Spawn new particles: creates new particles for units that were previously within the
agent’s vision range that are no longer within the agent’s vision range.

The spawning process instantiates a new particle by computing a trajectory, assigning an initial
weight of one, and placing the particle at the enemy unit’s last known position.

Unlike previous work, the model does not perform a normalization process, because mul-
tiple units may be indistinguishable. Additionally, my model does not commit to a specific
sampling policy. The process for determining which particles to sample is left up to higher-level
agent behaviors.

A visualization of the model at different phases throughout a game is shown in Figure 32. In
the figure, green dots are the locations of player units, red dots are the locations of enemy units,
and blue dots are estimations of enemy unit locations. During the early stages of the game,
the player sends a scouting unit to the opponent’s base, which identifies the location of the
majority of the opponent’s units. As the game progresses, both players expand to new locations
and the players begin attacking each other. The estimations during the middle of the game
show that the model is aware of the opponent’s forces in the middle of the map, but not the
opponent expansion. During the late stages of the game, a majority of the map is covered by
the players. While the model does not provide exact locations of enemy forces, in this example
the model is able to identify the relative army strength in each of the map regions.

5.3.3 Model Training

I explored the application of particle models to StarCraft by performing off-line analysis.
The goal of this work was to determine the accuracy of different model settings and to find
near-optimal trajectory and decay parameters for the models. The parameters in the particle
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Table 10: The parameters in the model include decay rates and movement weights for four different
classes of units. The values shown here are values selected for Protoss versus Zerg games.

Decay Rate

Building 0.00

Worker 0.00

Ground Attacker 0.04

Air Attacker 0.13

Movement Vector

Building 0.00

Worker 5.67

Ground Attacker 5.35

Air Attacker 31.57

Chokepoint Vector

All Classes 20.96

model are shown in Table 10. To evaluate the models, I collected a corpus of StarCraft replays,
extracted game state and observation data from the replays, and simulated the ability of the
models to predict the enemy threat in each region of the map at each time step.

To enable off-line analysis of particle models, I collected thousands of expert-level StarCraft
replays. Replay collection is described in more detail in Section 5.1.1. I sampled the replays
by randomly selecting ten replays for each unique race match up. An additional constraint
applied during the sampling process was that all replays in a sample were played on distinct
maps. This constraint was included to ensure that the particle models are applicable to a wide
variety of maps.

I extracted game state information from the sampled replays by viewing them using the
replay mode of StarCraft and querying game state with the Brood War API. My replay tool
outputs a dump of the game state once every 5 seconds (120 frames), which contains the
positions of all units. The extracted data provides sufficient information for determining which
enemy units are visible by the player at each time step. The resulting data set contains an
average of 2,852 examples for each race match up.

I explored a region-based metric for state estimation in StarCraft, where the role of the
particle model is to predict the enemy threat in each region of the map. The error function
makes use of the Brood War Terrain Analyzer, which identifies regions in a StarCraft map [82].
The particle model is limited to observations made by the player, while the error function is
based on complete game state.

Error in state estimation can be quantified as the difference between predicted and actual
enemy threat. The particle model predicts the enemy threat in each region based on the
current game state and past observations. For each region, the enemy threat is computed as
the number of visible enemy units in the region (unit types are uniformly weighted), plus the
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summation of the weights of particles within the region. Given predictions of enemy threat at
time step t , state estimation error is computed as follows:

error(t ) = ∑
r∈R

|p(r , t )−a(r , t )|

where p(r , t ) is the predicted enemy threat of region r at time step t , a(r , t ) is the actual number
of enemy units present in region r at time step t , and R is the set of regions in a map. The
actual threat for a region can be computed using the complete information available in the
extracted replay data. The overall error for a replay is defined as follows:

error = 1

T

T∑
t=1

error(t )

where T is the number of time steps, and error is the average state estimation error.
My proposed particle model includes several free parameters for specifying the trajectories

and decay rates of particles. To select optimal parameters for the particle model, I represent
state estimation as an optimization problem: the state estimation error serves as an objective
function, while the input parameters provide a many-dimensional space. The set of parameters
that minimizes the error function is selected as optimal parameters for my particle model.

To find a solution to the optimization problem, I applied the Nelder-Mead technique [70],
which is a downhill simplex method. I used Michael Flanagan’s minimization library2 which
provides a Java implementation of this algorithm. The stopping criterion for my parameter
selection process was 500 iterations, which provided sufficient time for the algorithm to
converge.

5.3.4 Evaluation

I compared the performance of the particle model with a baseline approach as well as a perfect
prediction model. The range of values between the baseline and theoretical models provides a
metric for assessing the accuracy of my approach. I evaluated the following models:

• Null Model: A particle model that never spawns particles, providing a baseline for worst-
case performance.

• Perfect Tracker: A theoretical model which perfectly tracks units that have been previ-
ously observed, representing best-case performance.

• Default Model: A model in which particles do not move and do not decay, providing a
last known position.

• Optimized Model: The particle model with weights selected from the optimization
process.

The null model and perfect tracker provide bounds for computing the accuracy of a model.
Specifically, I define the accuracy of a particle model as follows:

accuracy = errorNullModel −error

errorNullModel −errorPerfectTracker

2 http://www.ee.ucl.ac.uk/~mflanaga/java

http://www.ee.ucl.ac.uk/~mflanaga/java
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Table 11: The accuracies of the different particle models varies based on the specific race match up.
Overall, the optimized particle model performed best in the off-line state estimation task.
Providing the particle models with additional features, including the target vector (T ) and
ability to distinguish units (I ), did not improve the overall accuracies.

PvP PvT PvZ TvP TvT TvZ ZvP ZvT ZvZ Avg.

Default 0.75 0.74 0.69 0.57 0.78 0.83 0.63 0.68 0.36 0.67

DefaultI 0.75 0.73 0.71 0.72 0.76 0.767 0.68 0.70 0.56 0.71

Optimized 0.84 0.77 0.73 0.71 0.81 0.83 0.70 0.72 0.54 0.74

OptimizedI 0.75 0.73 0.71 0.72 0.76 0.77 0.68 0.70 0.56 0.71

OptimizedT 0.84 0.74 0.71 0.71 0.81 0.83 0.70 0.72 0.54 0.73

where error is the state estimation error. Accuracy provides a metric for evaluating the ability
of a particle model to estimate enemy threat.

The accuracy of the default and optimized models for each of the race match ups are shown
in Table 11. A race match up is a unique pairing of StarCraft races, such as Protoss versus Terran
(PvT) or Terran versus Zerg (TvZ). The table also includes results for variations of the particle
models which were provided with additional features. The DefaultI and OptimizedI models
were capable of identifying specific enemy units across observations, and the OptimizedT

model used the target vector while other models did not. Accuracies for the null model and
perfect tracker are not included, because these values are always 0 and 1. Overall, the optimized
particle model, which is limited to features available to humans, performed best. Providing
additional information to the particle models did not, on average, improve the accuracy of
models.

There are several factors that result in different accuracies across the race match ups. One
of the biggest influences on the accuracy of the particle model is the average game time for
the particular match up. Zerg versus Zerg games frequently have the shortest game lengths in
tournament play, and the particle models performed worst on this match up. Another factor
in the different race match ups is army mobility. Terran players tend to group units into large
forces and slowly push across the map, while Zerg and Protoss armies are more mobile. A third
factor is different units that provide vision of the map. Zerg players can scout the map using
Overlords, while Terran players are less reliant on scouting units. These different factors result
in different accuracies across the optimized and default particle models for the race match
ups.

One of the limitations of the error measurement is that it aggregates the performance of
each model over complete games. I also investigated the variation in accuracy of different
models over the duration of a game, which provides some insights into the scouting behavior
of players. The average threat prediction errors for the different models in Terran versus Protoss
games is shown in Figure 33. In this race match up, there was a noticeable difference between
the accuracies of the default and optimized models. In the early stages of the game there is no
difference between the models, because no enemy units have been observed. Players tend to
scout the opponent between three and four minutes game time, which leads to improved state
estimations. There is little difference between the default and optimized particle models in the
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Figure 33: The average error of the particle models in Terran versus Protoss games vary drastically over
the duration of a game. The accuracy of the particle models improve over baseline perfor-
mance once enemy units are scouted. The optimized particle model noticeably outperforms
the default particle model after 12 minutes.

first 12 minutes of the game, but the optimized model is noticeably more accurate after this
period.

5.3.5 Conclusion

Players use estimations of opponent force locations to determine where to defend and identify
candidate locations for assaulting opponents. Tracking opponent forces is a necessary capabil-
ity for expert-level gameplay. To emulate this capability in my system, I developed a particle
model that estimates the locations of opponent units that have been observed. The model
contains parameters for movement and decays weights for different units classes, and values
for these parameters are selected by representing state estimation as an optimization problem.

In order to evaluate the accuracy of different parameter settings, I extracted game state
observations from professional replays and simulated the ability of different models to predict
the locations of enemy units. This process uses demonstrations as a way to perform model
optimization. To provide a baseline for comparing different models, I introduced the perfect
tracker, which is a model with a priori knowledge of unit movement. Another result is that the
output of the models show general patterns in StarCraft gameplay, such as the initial scout
timing of professional players.

5.4 S U M M A R Y

StarCraft gameplay requires a combination of deliberative and reactive reasoning capabilities.
To perform at an expert level, it is necessary to build anticipations of opponent actions in order
to formulate counter measures. Three capabilities demonstrated by professional players are
anticipation, adaptation, and estimation. To realize these in an agent, I have explored different
approaches for learning from gameplay demonstrations. Each of these approaches applies to a
single scale of gameplay, and uses the demonstrations in a unique way.
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To emulate the anticipation capability demonstrated by players, I used demonstrations
to train classification and regression models that perform build order prediction and timing
prediction tasks. The motivation for this approach was that plotting the timing distribution
of individual features hinted at different opponent strategies. To train the different models, I
converted thousands of replays into a feature vector representation that captures a player’s
expansion of the tech tree. The classification algorithms were evaluated against the rule set used
to label the vectors, and the results showed that several classification models outperformed
the rule set. Therefore, the classification models exhibited foresight in predicting opponent
strategies. The main limitations of this approach are that it requires hand-authoring a rule set
for labeling strategies and it predicts strategies for a specific phase of the game.

To emulate the adaptation capability demonstrated by players, I presented case-based goal
formulation. This technique uses a collection of demonstrations in order to formulate goals
for an agent to pursue and can be applied to the task of anticipating the future state of an
opponent. Rather than hand-authoring specific goals for the agent to pursue, the system learns
strategies from a collection of demonstrations. In case-based goal formulation, demonstrations
are converted to a case library and used in a case retrieval process that exploits the temporal
structure of demonstrations. The motivation for this approach is that the game state reached
in later stages of a game can be inferred as a player’s goals earlier in the game. One of the
advantages of this approach is that it can be used at any time during a game. I evaluated
case-based goal formulation on the task of predicting future opponent state and the results
show that it outperformed classification algorithms.

To emulate the estimation capability demonstrated by players, I explored a particle model
for tracking observed enemy units. The particle model is motivated by the application of
particle filters to state estimation in games, but I used a single particle per unit approach due
to unique challenges presented in RTS games. The resulting model has several free parameters
for managing the movement and decay functions of particles. To select suitable parameters for
the model I represented state estimation as an optimization problem and used demonstrations
to implement an error function for evaluating different model settings. In this process, demon-
strations are used to provide examples of gameplay that enable off-line analysis of different
model settings. To evaluate the different models, I compared the optimized particle model
with a perfect tracker, which provided a lower bound of prediction error. The results showed
that the optimized model outperformed the default model in off-line experiments.

Each of the methods presented in this chapter use demonstrations in order to build a model
of gameplay. One of the limitations of these methods is that a batch process is used for training.
In order for these approaches to adapt to the evolving meta-game of StarCraft, it is necessary
to rebuild the models with additional demonstrations as gameplay changes.



6
I N T E G R AT I N G L E A R N I N G

One of the central challenges in building an agent capable of expert level RTS gameplay is
supporting heterogeneous reasoning capabilities in an integrated system. StarCraft requires
both reactive and deliberative decision making, and professional players also demonstrate
adaptation, anticipation, and estimation capabilities during gameplay. A system that repro-
duces these capabilities needs to not only support each of these processes, but to integrate
them as well.

In the previous chapters I explored how existing AI methodologies can be used to support
many of the capabilities necessary for RTS gameplay. Reactive planning provides mechanisms
that support authoring multi-scale agents, and case-based reasoning and machine learning
can be used to build models of gameplay from demonstrations. The outcome of this work is an
agent that plays complete games of StarCraft with a fixed strategy, and models for anticipating
the actions of an opponent, estimating the locations of opponent units, and formulating
strategic goals from gameplay examples. To integrate these capabilities in EISBot, my approach
uses working memory to interface reactive planning with external components that generate
plans and formulate goals.

There are a number of ways in which the ABL reactive planner can be interfaced with
external reasoning processes. One way of interfacing ABL with other components is by adding
additional facts to the agent’s working memory. Facts generated from external components can
be used for condition checks in ABL behaviors, such as using estimates of opponent locations
in attack behaviors. ABL can also be interfaced with components that perform plan generation
and goal formulation outside the scope of the reactive planner. In this configuration, ABL is
used to manage the active goals of the agent and execute plans, while goals can be generated by
the reactive planner or external components. I interface ABL with an external plan generation
process to realize deliberative reasoning capabilities in EISBot.

While these integration approaches enable the reactive planning agent to interface with
external components, each of the learned gameplay models is used in isolation of each other.
To facilitate coordination between the different components in the system, I investigate an
instantiation of the goal-driven autonomy (GDA) conceptual model [65], which outlines a
number of subtasks within an agent. These subtasks include monitoring expectations, detect-
ing discrepancies, generating explanations, and formulating goals. My system implements
these tasks using examples learned from gameplay demonstrations. Using the GDA model
enables the agent to integrate processes that anticipate the actions of an opponent, detect
when new opponent strategies are being pursued, and formulate goals in response to opponent
strategies.

This chapter presents methods for integrating reactive planning with external components.
I start by providing an overview of the agent architecture. I then identify design patterns used
to interface EISBot with gameplay models learned from demonstrations. Building on this work,
I present an instantiation of the GDA model that integrates anticipation and goal formulation
capabilities in EISBot.
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Figure 34: The agent architecture includes the ABL reactive planner, a Java middleware layer, and
learning components. The learning components take a collection of replays as input and
communicate with ABL through the agent’s working memory. The Java middleware man-
ages synchronization with StarCraft, sends game state updates to working memory and the
learning components, and performs actions selected for execution by ABL.

6.1 A G E N T A R C H I T E C T U R E

The components in EISBot include the ABL reactive planner, a Java middleware layer, and
learning components. An overview of the agent architecture is shown in Figure 34. The agent
runs as a separate process from StarCraft and interfaces with the game through the use of a
shared-memory bridge, which is presented in Section 4.3.1. The core of the agent is imple-
mented in the ABL reactive planning language, as a collection of hand-authored behaviors.
The structure of the ABL behavior library is based on the integrated agent framework of McCoy
and Mateas [61], which decomposes RTS gameplay into distinct tasks and includes a manager
for performing each of these tasks. The design of the ABL agent is discussed in more detail in
Section 4.3.

The Java middleware layer performs several functions. It is responsible for communicating
with the StarCraft process and managing synchronization. The layer also implements sensors
and actions that enable the ABL agent to interact with StarCraft. On game update events, the
layer retrieves the current game state from StarCraft and updates data structures used by WME
sensors and the learning components. At the end of the update, it dispatches unit orders that
have been selected for execution by ABL behaviors. The middleware layer provides utility
functions that can be queried by mental acts and condition checks in ABL behaviors, such as
testing if a location is suitable for constructing a structure. Another function the layer provides
is additional physical actions that are not directly supported via the game interface, such as
ordering a squad of units to attack a target location. It also notifies other components in EISBot
when a game update has occurred.

The learning components in EISBot interface with the middleware layer, working mem-
ory, and a collection of replays. Each of the learning components in the system operate in-
dependently and coordinate using messages in working memory. EISBot includes learning
components that track estimations of opponent units, select strategic plans for the system
to execute, and perform GDA subtasks. These components are discussed in more detail in



6.2 I N T E G R AT I O N A P P R O A C H E S 76

Section 6.2.1 and Section 6.2.2. These components interface with working memory by querying
for the existence of WMEs, posting WMEs to memory, and consuming WMEs. The learning
components are given a collection of replays that have been converted into the necessary data
format. For most of these components, a training phase is performed offline before the start of
games in order to build a gameplay model. The learning components do not select actions for
execution directly, and instead delegate action execution and monitoring to ABL.

The components in EISBot use working memory as a blackboard [36], enabling external
components to coordinate with ABL behaviors and query active goals. In addition to storing
facts about the world, the working memory of an ABL agent includes the expansion of the
active behavior tree. A variety of event-based and polling approaches are used in EISBot to
facilitate coordination between ABL behaviors and the learning components.

6.2 I N T E G R AT I O N A P P R O A C H E S

EISBot integrates heterogeneous components using multiple integration approaches. These
include adding elements to working memory, formulating goals to pursue, generating plans
to execute, and providing additional conditions for behavior activation. I have used these
approaches to integrate the ABL reactive planner with case-based reasoning, goal-driven au-
tonomy, and machine learning components. These components interface with ABL behaviors
through working memory design patterns. While the methods presented here are used in a re-
active planning agent, the integration approaches could be applied to other agent architectures
with working memories.

One way of interfacing with external components in a reactive planner is to utilize the multi-
scale idioms presented in Section 4.4. The message passing and behavior locking patterns are
used to interface external components with working memory. It is also possible for external
components to replace ABL managers, by implementing a manager contract. External compo-
nents that interact with working memory directly, rather than through the use of sensors, need
to be synchronized with the ABL decision cycle in order to avoid race conditions.

This section presents methods used in EISBot to integrate ABL with learning components.
These methods are visualized in Figure 35. To integrate state estimation, the particle model aug-
ments working memory with estimates of opponent locations. To integrate strategy learning,
ABL behaviors execute and monitor plans generated by external components. To integrate goal-
driven autonomy, the agent pursues goals spawned by external processes and uses behaviors
activated by external components.

6.2.1 Augmenting Working Memory

The gameplay models learned from demonstration can be integrated in EISBot by supplement-
ing the agent’s working memory with additional beliefs. These beliefs can be estimates about
the game state, such as the location of opponent units, or anticipations of opponent actions,
such as a prediction of the opponent build order. A belief can be added to the agents working
memory by instantiating a WME and placing it in working memory. WMEs added to work-
ing memory by external components can be used in the condition checks of ABL behaviors
including preconditions, context conditions, and success tests. In order to utilize additional
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Figure 35: External components are integrated in EISBot using ABL’s working memory. The state esti-
mator adds additional facts to the agent’s working memory that are used for parameterizing
physical actions. The plan generator adds production requests to working memory that result
in sequences of physical actions. The goal formulation adds requests to working memory
that result in the agent spawning additional goals to pursue.
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Figure 36: The agent’s perspective of the game state is augmented with predictions of opponent loca-
tions, shown in blue. The image on the left shows an agent with complete vision of the map
and the image on the right shows estimates of unit locations based on previously observed
opponent units.

WME types added to working memory, it is necessary to author additional ABL behaviors that
operate on these beliefs.

One of the learning components that utilizes this integration approach is the state estimation
particle model. The input to the particle model is observations of enemy unit locations, and
the output of the model is estimates of enemy unit locations. A visualization of the inputs and
outputs of the particle model in an example game are shown in Figure 36. Each enemy unit
is tracked by a particle, which stores the unit type and location, applies a movement model,
and manages a decay function. The particle model is notified of game updates by the Java
middleware layer, which also provides a list of enemy units that are currently visible in the
game.

The state estimation component maintains a list of candidate enemy locations, represented
by the particles in the model. The component instantiates a ParticleWME for each of the
particles in the model, which contains the location of the particle and the unit type it is
tracking. The ParticleWMEs are added to the agent’s working memory through the use of a
ParticleWME sensor, which queries the particle model for the list of candidate locations. Using
a sensor object to modify working memory ensures that updates are synchronized with the
ABL decision cycle.

EISBot includes scouting and tactical ABL behaviors that operate on ParticleWMEs. The
particles provide candidate locations to attack and scout based on the estimations tracked by
the model. One of the tasks that uses particles is target selection. A subset of the behaviors that
implement target selection in EISBot are shown in Figure 37. These behaviors accomplish the
goal attack for a specified unit and have different specificities. The behavior with the higher
specificity will be selected for expansion if there are enemy units visible to the agent. If there
are no enemy units visible, then the lower specificity behavior will be selected for expansion,
which selects a particle location to attack. In this configuration, the agent will attack enemy
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sequential behavior attack(PlayerUnitWME unit) {

precondition {

(EnemyUnitWME x::x y::y)

}

specificity 2;

act attackMove(unit, x, y);

}

sequential behavior attack(PlayerUnitWME unit) {

precondition {

(ParticleWME x::x y::y)

}

specificity 1;

act attackMove(unit, x, y);

} �
Figure 37: EISBot includes two behaviors for achieving the attack goal. The first behavior selects an

attack target based on the location of an enemy unit currently in the agent’s field of view,
while the second behavior selects a target using a predicted enemy location.

units if they are visible and if no units are visible, attack locations are chosen using the particle
model. The particle model is also used in EISBot to activate scouting behaviors. If no particles
are present in working memory past a specific game time, the agent spawns the goal of scouting
base locations.

6.2.2 External Plan Generation

While ABL is well suited for managing the execution of an agent, it lacks deliberative planning
capabilities. One way of realizing deliberative reasoning capabilities in an ABL agent is to
use external components to generate plans and apply ABL to the task of plan execution and
monitoring. Plan monitoring is an important task in RTS games, because most actions are
performed over a duration and actions can fail for a number of reasons. EISBot uses external
components to select strategic plans to execute, which generate sequences of production
actions. At the start of the game, a plan is selected from a collection of hand-authored build
orders. Later in the game, new plans are generated using case-based goal formulation [106].

The external planning process replaces a collection of ABL behaviors responsible for build
order selection. In the initial version of EISBot, all of the logic for selecting which production
actions to perform was implemented as hand-authored behaviors. These behaviors can be
easily replaced with the external planning process, because message passing idioms are used
to separate behaviors that select production actions to perform and behaviors that handle the
details of executing production actions. The planning component implements a subset of the
strategy manager and is responsible for build order selection.

The output of the external planning components is a sequence of production actions to per-
form. These actions include constructing buildings, training units, and researching upgrades.
The planner creates a production request WME for each of the actions in the generated plan.
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sequential behavior buildOrderManager() {

with (persistent) subgoal processPlanRequests();

}

sequential behavior processPlanRequests() {

PlanRequestWME request;

with (success_test {

request = (PlanRequestWME)

}) wait;

subgoal processPlanRequest(request);

mental_act {

BehavingEntity.getBehavingEntity().deleteWME(request);

}

} �
Figure 38: The build order manager is a daemon behavior responsible for processing production actions

selected by external planning components. When production requests are placed in working
memory, the manager retrieves the requests, executes the production action, and then deletes
the request.

These actions are added to working memory and consumed by ABL behaviors responsible for
handling these requests. The ABL daemon behavior responsible for handling external produc-
tion requests is shown in Figure 38. When production requests are placed in working memory,
the manager retrieves the requests, pursues a subgoal for accomplishing the request, and then
deletes the request upon completion. The agent includes multiple behaviors for achieving
the processPlanRequest goal, which can involve training units, constructing buildings, and
researching upgrades.

6.2.3 External Goal Formulation

Another way EISBot interfaces with components is by pursuing goals that are selected outside
of the reactive planning process. Goals that are formulated external to the agent can be added
to the reactive planner by modifying the structure of the active behavior tree, or by triggering
ABL’s spawngoal functionality, which causes the agent to pursue a new goal in parallel with the
currently active goals.

I have interfaced ABL with external goal formulation components using the message passing
design patterns. The goal formulator determines when to pursue a specific goal, and upon
activation posts a WME to working memory that requests a goal to be pursued. This WME is
consumed by an ABL behavior responsible for processing external requests and spawning goals.
An ABL behavior that performs this functionality for the attack goal is shown in Figure 39.
Structuring the agent in this way enables the conditions for launching attacks to be decided by
hand-authored ABL behaviors or external components.

My approaches for integrating external plan generation and goal formulation are quite
similar. Both of these approaches are implemented as behaviors that consume requests from
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sequential behavior monitorAttackRequests() {

AttackGoalWME request;

with (success_test {

request = (AttackGoalWME)

}) wait;

mental_act {

BehavingEntity.getBehavingEntity().deleteWME(request);

}

spawngoal attack();

} �
Figure 39: Goals selected for activation by external components are spawned by ABL behaviors that im-

plement the message consumer pattern. In this example, an external component formulates
the goal of attacking and adds an attack request to working memory, while the ABL behavior
consumes the request and spawns the attack goal.

working memory. The main difference is that behaviors that consume plan actions pursue
the actions inline as a subgoal, while behaviors that consume requests for goal pursuit spawn
new threads of execution for pursuing the goal. These approaches are similar in EISBot, be-
cause performing production tasks involves several behaviors that monitor the execution of
production actions.

6.2.4 Behavior Activation

ABL agents can be interfaced with components that manage the activation conditions of
behaviors. ABL behaviors contain zero or more preconditions, which specify activation con-
ditions. These conditions can contain procedural preconditions [77], which query external
components for activation. In EISBot, procedural preconditions are used to query the Java
middleware layer for candidate locations to construct buildings.

Behavior activation is similar to the behavior locking design pattern presented in Sec-
tion 4.4.4, but enables a behavior for expansion rather than disabling it. Another way to
implement behavior activation in ABL is to incorporate WME condition checks in a behavior,
where the WMEs are managed by an external component. This approaches differs from the
plan generation and goal formulation patterns, because the behaviors using the WME for acti-
vation do not consume the WME. Instead the external component is responsible for posting
and removing the activation WME from working memory. In EISBot, behavior activation is
used to enable behaviors that build detection units, which occurs when external components
anticipate that the opponent is building cloaking units.

6.3 G O A L - D R I V E N AU T O N O M Y

Expert-level StarCraft gameplay requires integrating multiple reasoning capabilities in order
to anticipate the actions of opponents, identify when strategies being pursued are no longer
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effective, and to formulate responses to opponent strategies. In the previous section I pre-
sented methods for interfacing external components with reactive planning, but each of these
components worked in isolation of each other. In order to emulate the behavior of expert
players, it is necessary to facilitate tighter coordination across these external components.
The ability to anticipate, assess, and respond to opponent strategies involves decision making
across multiple gameplay scales. To realize these capabilities in EISBot, I apply the goal-driven
autonomy (GDA) model.

The GDA conceptual model provides a framework for creating agents capable of responding
to unanticipated failures during plan execution in complex, dynamic environments [65]. It is
motivated by Cox’s claim that agents should reason about their goals in order to continuously
operate with independence [23]. The conceptual model specifies subtasks that enable an
agent to detect, reason about, and respond to unanticipated events. However, it makes no
commitment to specific algorithms.

The GDA model extends Nau’s model of online planning [69] by identifying specific subtasks
within the controller of an agent, as shown in Figure 40. The controller interacts with an exe-
cution environment that provides observations of world state and a planner that generates
sequences of actions to achieve the agent’s current active goal. In order to identify when plan-
ning failures occur, a GDA agent requires the planning component to generate an expectation
of world state after executing each action in the execution environment.

A GDA agent starts by passing an initial goal to the planner. The planner generates a plan
consisting of a set of actions, a, and expectations, p. As actions are performed in the execution
environment, the discrepancy detector checks if the resulting world state, s, matches the
expected world state. When a discrepancy is detected between the expected and actual world
states, the agent creates a discrepancy, d , which is passed to the explanation generator. Given
a discrepancy, the explanation generator builds an explanation, e, of why the failure occurred
and passes it to the goal formulator. The goal formulator takes an explanation and formulates
a goal, g , in response to the explanation. The goal is then passed to the goal manager, which is
responsible for selecting the agent’s active goal.

I have applied the GDA model to the task of monitoring strategy execution in StarCraft.
The subtasks in the model identify when the current strategy becomes invalidated due to the
actions of the opponent and formulates a new strategy for the agent to pursue. I have explored
two versions of the GDA model. In the first version, all of the GDA subtasks are implemented
as hand-authored ABL behaviors. This version applies the GDA model in order to monitor
strategies, but lacks integration with the external learning components. In the second version,
three of the GDA subtasks are implemented using case-based goal formulation. This version
monitors strategy execution and integrates external learning components.

6.3.1 Hand-Authoring Rules

One of my goals in applying the GDA model is to decouple goal selection from goal execution
logic in EISBot. The motivation for this decoupling is to enable external learning components
to select goals for the agent to pursue. In the first implementation of the GDA model, I authored
a collection of ABL behaviors that perform the discrepancy detection, explanation generation,
and goal formulation tasks [107]. This approach is similar to previous work that implemented
the GDA model using hand-authored production rules [68]. One of the key distinctions of this
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Figure 40: A GDA agent interacts with a planner and execution environment, and incorporates a con-
troller with subtasks for monitoring plan execution.

approach from previous work was that EISBot does not model expectations. Instead, the agent
has a collection of discrepancy detection behaviors that are always active.

The discrepancy detector generates discrepancies when the agent’s expectations are vio-
lated. Discrepancies serve the purpose of triggering the agent’s goal reasoning process and
provide a mechanism for responding to unanticipated events. EISBot generates discrepancies
in response to detecting the following types of game events:

• Unit Discrepancy: opponent produced a new unit type.

• Building Discrepancy: opponent built a new building type.

• Expansion Discrepancy: opponent built an expansion.

• Attack Discrepancy: opponent attacked the agent.

• Force Discrepancy: there is a shift in force sizes between the agent and opponent.

The discrepancies are intentionally generic in order to enable the agent to react to a wide
variety of situations. EISBot uses event-driven behaviors to detect discrepancies. An example
behavior for detecting new units is shown in Figure 41. The detect behavior has a set of
preconditions that checks for an enemy unit, binds its type to a variable, and checks whether
a discrepancy for the unit type currently exists in working memory. If there is not currently a
unit type discrepancy for the bound type, a mental act is used to place a new discrepancy in
working memory.

The explanation generator takes as input a collection of discrepancies and outputs explana-
tions. Given a discrepancy, zero or more of the following explanations are generated:
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• Cloaking: opponent is building cloaked units.

• Expanding: opponent is expanding.

• Air Units: opponent is building air units.

• Force Advantage: opponent has force advantage.

The explanation generator is implemented as a set of behaviors that apply rules of the form:
if d then e. An example behavior for generating explanations is the explain behavior shown
in Figure 41. The behavior checks if the opponent has upgraded to a Lair and constructed a
Hydralisk Den, which indicates that the opponent may be producing units capable of cloaking.
In response to detecting these conditions, the agent creates an explanation that the opponent
is building units capable of cloaking.

The goal formulator spawns new goals in response to explanations. Given an explanation,
one or more of the following goals are spawned:

• Execute Strategy: selects a strategy to execute.

• Expand: builds an expansion and trains worker units.

• Attack: attacks the opponent with all combat units.

• Retreat: sends all combat units back to base.

Goal formulation behaviors implement rules of the form: if e then g . EISBot contains two types
of goal formulation behaviors: behaviors that directly map explanations to goals, as in the
example of mapping an enemy cloaking explanation to the goal of building detector units, and
behaviors that select among one of several goals in response to an explanation. An example
goal formulation behavior is shown in Figure 41. The behavior spawns goals to retreat and
build detectors in response to an explanation that the agent is producing cloaking units.

Using the GDA model enables the system to monitor the execution of strategies and to
respond if the current strategy becomes invalidated. The main limitation of this approach is
that all discrepancies, explanations, and goals have to be hand authored. Additionally, this
approach did not reason about expectations and therefore was not capable of integrating
anticipations of opponent actions. However, implementing the GDA subtasks in ABL enabled
a decoupling between the goal section and goal execution logic in the agent, which can be
exposed to external components.

6.3.2 Learning GDA Subtasks

I also explored an implementation of the GDA conceptual model that uses external learning
components to perform the GDA subtasks. Rather than requiring a domain expert to specify
expectations, explanations, and goals, my approach learns how to generate these objects from
examples. The GDA subtasks are implemented using variations of case-based goal formulation
[106]. Using the GDA model to integrate external learning components enables the agent to
incorporate anticipation and adaptation capabilities.

This approach is specific to adversarial domains, in which planning failures or exogenous
events occur due to the actions of other agents. I apply two case libraries: the opponent library,
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parallel behavior gdaManager() {

subgoal detect();

subgoal explain();

subgoal formulate();

}

// Discrepancy Detection

sequential behavior detect() {

precondition {

(EnemyUnitWME type::type)

!(DiscrepancyWME type==type)

}

mental_act {

BehavingEntity.getBehavingEntity().addWME(new DiscrepancyWME(type));

}

}

// Explanation Generation

sequential behavior explain() {

precondition {

(DiscrepancyWME type==HydraliskDen)

(DiscrepancyWME type==Lair)

!(ExplanationWME type==Cloaking)

}

mental_act {

BehavingEntity.getBehavingEntity().addWME(

new ExplanationWME(Cloaking));

}

}

// Goal Formulation

sequential behavior formulate() {

precondition {

explanation = (ExplanationWME type==Cloaking active=true)

}

spawngoal buildDetectors();

spawngoal retreat();

mental_act {

explanation.setActive(false);

}

} �
Figure 41: I authored a collection of ABL behaviors for implementing the GDA subtasks in EISBot. The

detect behavior generates discrepancies when new enemy unit types are observed. The
explain behavior generates an explanation that the opponent is building cloaking units.
The formulate behavior spawns goals for the agent to pursue in response to the cloaking
explanation.
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AL, provides examples for opponent actions and is used for intent recognition by performing
goal formulation on the opponent’s state, while the goal library, GL, is used to select goals for
the agent to pursue. By using case-based goal formulation to retrieve goals from the adversarial
case library, the agent can build predictions of the future actions of an opponent. I refer to the
number of actions, m, that the retrieval mechanism looks ahead at the opponent’s actions as
the look-ahead window. This differs from the planning window size, which is the number of
actions to look ahead when generating plans.

The GDA components utilize a numerical feature vector representation that describes
game state. The representation includes features for describing the agent’s world state and
a single opponent’s world state. Additional discussion of the representation is presented in
Section 5.2.3. The agent uses the same case library for both the opponent case library and the
goal library. When retrieving cases using the opponent case library, AL, the distance function
uses a subset of features, which describe opponent state. This feature subset is used by the
expectation builder and explanation generator. The system generates expectations for features
that correspond to changes in opponent state, and explanations are computed based on
changes in opponent state. When retrieving cases using the goal library, GL, the complete
feature set is used by the distance function. During goal retrieval, the system computes the
goal state based on changes in agent state, while ignoring opponent state.

The methods presented here for generating expectations, explanations, and goals from
demonstrations build on the Trace algorithm presented in Section 5.2.2. Expectations are used
for strategy prediction, and are generated by identifying new units and structures produced in
retrieved examples. To build expectations, the Trace algorithm is applied to the opponent game
state. Explanations are also used for strategy prediction, and are generated by applying the
Trace algorithm to goal formulation using the opponent game state. Goals are used to select
new strategies for the agent to pursue, and are generated by applying the Trace algorithm to
the agent game state. An example of the different applications of the Trace algorithm for the
GDA subtasks is presented in Section 6.3.2.5.

6.3.2.1 Building Expectations

I define an expectation, p, as an anticipated change in a single world state feature caused by
an opponent’s actions. Specifically, expectations are beliefs that the opponent will perform an
action that introduces a new unit type, x into the game at a specific time, τ:

p(x,τ) : st (x) > 0, t ≥ τ

where s is the game state and x is a feature that describes the opponent’s state. When an
expectation is generated, the agent anticipates the presence of unit type x in the execution
environment after time τ.

In order to build expectations, the system retrieves the most similar case from the opponent
case library and identifies times in which new units are introduced into the game. The system
triggers expectation generation when a new active goal is selected by the goal manager. A set
of expectations, π, is generated as follows:

q = argmin
c∈AL

distance(s,c)

π= {p(x,τ) : τ= min
v

[qv (x) > 0, v > t ]

| ∀x, qt (x) = 0, qt+m(x) > 0}
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The retrieval process occurs at time t with a look-ahead window of size m. It generates an
expectation for each feature describing an opponent unit type, x, in the retrieved case, q , which
changes from a zero value to a positive value between time t and time t +m. The time selected
for the expectation is the smallest time step, τ, where the feature has a positive value. Each
expectation represents an anticipated change in a single opponent feature at a specific time.

I use a modified version of the Trace algorithm to build expectations in EISBot. The Trace
algorithm computes a new goal for the agent to pursue by finding the difference between two
different time steps in a retrieved case. An overview of the Trace algorithm is presented in
Section 5.2.2, and an example of expectation generation is presented in Section 6.3.2.5. In order
to build expectations, I modified the retrieval process to identify new unit types produced
by the opponent between these two time steps. The earliest time step that a new unit type is
produced by the player is selected as the time, τ, to anticipate the unit type, x.

6.3.2.2 Detecting Discrepancies

A discrepancy, d , is defined as an expectation that is not met. This situation occurs when an
opponent does not perform actions causing an anticipated state change. The system creates a
discrepancy when the following conditions are met:

p(x,τ), st (x) = 0, t ≥ τ+δ

where δ is a discrepancy period, which provides a buffer period for observing state changes.
This situation occurs when an unit of type x has not been observed in the game before time
τ+δ.

There are two causes of discrepancies in this formulation. In the first case, the opponent
does not produce the anticipated unit type during the discrepancy period. This can result from
the opponent changing strategies or from the agent forming an incorrect prediction. In the
second case, the opponent produces the anticipated unit type during the discrepancy period,
but the agent does not observe the unit type. This situation can occur due to the fog-of-war in
StarCraft.

6.3.2.3 Generating Explanations

EISBot generates explanations when the active goal completes or a discrepancy is detected.
It creates explanations by applying goal formulation to the opponent, using the opponent
case library. I define an explanation, e, as a prediction of future world state resulting from
the execution of an opponent’s actions. The agent uses explanations to attempt to identify
how the opponent will change world state. This definition differs from previous work in GDA,
which uses explanations in order to identify why discrepancies occur using current world state
[65]. Both my approach and previous work use explanations as input to the goal formulation
subtask. The agent uses case-based goal formulation to create explanations as follows:

q = argmin
c∈AL

distance(s,c)

e = s + (qt+m −qt )

where AL is the opponent goal library, m is the number of opponent actions to look ahead,
and e is an anticipated future world state. An example of explanation generation is shown in
Section 6.3.2.5.
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The agent uses explanations in order to incorporate predictions about adversarial actions
into the goal formulation process. This approach differs from previous work [68], in which
explanations are used to explain the cause of discrepancies. One of the reasons for this differ-
ence is that actions performed in StarCraft usually do not immediately invalidate a strategy.
Additionally, the agent does not have complete state information and therefore it may not be
possible to identify the cause of a discrepancy in StarCraft. My approach uses demonstrations
to reduce the amount of domain engineering required to implement the GDA subtasks, while
trading off the explanation capabilities of the agent.

The main difference between expectations and explanations in EISBot is that an explanation
is an estimation of the future opponent state, while an expectation is an anticipation of a
specific opponent action. Expectations are used to trigger strategy invalidation in the agent,
because if an expected unit type is not produced by the opponent, it is likely that the predicted
strategy of the opponent is incorrect. Expectations provide a way to monitor the execution of
an opponent’s actions and track anticipated opponent actions.

6.3.2.4 Formulating Goals

I define a goal, g , as a future world state for the agent to achieve. The input to the goal
formulation component is the current world state and an explanation, e, which contains the
anticipated future world state of the opponent. Goal formulation is triggered when the agent’s
active goal completes or a discrepancy is detected. The agent formulates goals as follows:

q = argmin
c∈GL

distance(e,c)

g = s + (qt+n −qt )

where GL is the goal case library and the input to the case retrieval similarity metric is an
explanation of future world state. The output of the formulation process is a goal that is
passed to the goal manager, which is responsible for selecting the agent’s active goal. The goal
formulator can also be used without the explanation generator, by providing the current game
state as input to the retrieval process.

In EISBot, the goal formulator selects plans for the strategy manager to execute. To im-
plement plan selection, the Trace algorithm retrieves the most similar trace, and returns the
sequence of actions performed in the trace. The output of this process is a strategic plan that
enables the agent to pursue the goal state selected by the goal formulation process. Previous
GDA implementations have used separate goal formulation and plan generation processes.

6.3.2.5 GDA Example

The GDA subtasks are invoked when the agent selects an initial goal, the current goal is
accomplished, or a discrepancy is detected. During this invocation, the expectation generation
subtask selects a new set of expectations to monitor, the explanation generator creates an
anticipation of future opponent state, and the goal formulator produces a new goal for the
agent to accomplish. Consider an agent with a look-ahead window of size 3, a Euclidean
distance function, and the following opponent game state:

s =< 5,0,0,0 >
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In this representation, the features describe enemy unit counts for workers, depots, barracks,
and marines. The adversary case library, AL, is a single replay, consisting of the following cases:

q1 =< 4,0,0,0 >

q2 =< 5,0,0,0 >
q3 =< 5,1,0,0 >
q4 =< 6,1,0,0 >
q5 =< 6,1,1,0 >
q6 =< 6,1,1,1 >

During invocation, the following subtasks are performed. First, expectation generation would
proceed as follows:

1. The system retrieves the most similar case: q = q2

2. q′ is retrieved: q′ = q2+m = q5

3. New unit types are identified: depot @ t = 3, barracks @ t = 5

4. Expectations are generated: π= [p(depot,3), p(barracks,5)]

The result of the expectation generation process is that the agent anticipates that the opponent
will produce a depot at time t = 3 and a barracks at time t = 5. These expectations remain
active until a discrepancy is detected or the GDA process is invoked again. Second, explanation
generation would proceed as follows:

1. The system retrieves the most similar case: q = q2

2. q′ is retrieved: q′ = q2+m = q5

3. The difference is computed: q′−q =< 1,1,1,0 >

4. e is computed: e = s + (q′−q) =< 6,1,1,0 >
The result of the explanation generation process is that the agent anticipates that the opponent
will perform actions to reach the opponent state of < 6,1,1,0 >.

Third, goal formulation is performed by the agent using the current game state and ex-
planation as input. Consider the following goal case library, GL, which includes features for
describing the player state and the opponent state. The first four features correspond to player
workers, depots, barracks, and marines, and the second four features correspond to opponent
workers, depots, barracks, and marines:

p3 =< 7,0,0,0,5,1,0,0 >

p4 =< 7,0,1,0,6,1,0,0 >
p5 =< 7,0,1,0,6,1,1,0 >
p6 =< 8,0,1,0,6,1,1,0 >
p7 =< 8,0,1,1,6,1,1,1 >
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The goal formulation process selects the most similar case using both the current player state
and explanation, while selecting a new goal using only the difference in the player state. Given
a player state of < 7,0,1,0 >, and a planning window of size 2, goal formulation would proceed
as follow.

1. The system retrieves the most similar case: q = p5

2. q′ is retrieved: q′ = p5+n = p7

3. The difference is computed for the player state: q′−q =< 1,0,0,1 >

4. g is computed: g = s + (q′−q) =< 8,0,1,1 >

The result of this process is that the agent selects< 8,0,1,1 > as the new goal state to accomplish.
During the goal retrieval process, the Trace algorithm also retrieves the actions performed in
the trace. In this example, the retrieved plan is to train a worker unit and then train a marine.
While executing these actions, the agent has expectations for the opponent to produce a depot
and to produce a barracks.

6.4 I M P L E M E N TAT I O N

I have used the reactive planning idioms and integration approaches presented in this thesis
to build a complete game-playing StarCraft agent that incorporates estimation, adaptation,
and anticipation capabilities. EISBot integrates hand-authored reactive planning behaviors
with gameplay models learned from demonstrations. The system is a multi-scale agent that
performs concurrent tasks across different scales of gameplay, which work towards the goal of
defeating all opponents. The system builds on previous work for authoring multi-scale agents
[61, 108], and extends it in a number of ways.

The integration approaches are applied in EISBot to incorporate gameplay models learned
from demonstrations. The augmenting working memory pattern is used by the particle model,
which adds candidate unit locations to working memory. The external plan generation pattern
is used by the GDA subtasks, which select strategic plans for the agent to pursue and trigger
replanning if the current plan is invalidated. The external goal formulation and behavior
activation patterns are used by the agent to respond to anticipated opponent actions, such
as building detector units in response to cloaked units. Each of these approaches integrates
a learned model at a single scale, while the supporting reactive planning behaviors operate
across multiple scales.

In the current version of the system, EISBot plays only the Protoss race. I focused on a
single race, because each race has different gameplay characteristics and requires substantially
different behavior libraries. To reduce the domain engineering effort of building a complete
game-playing agent, I authored a behavior library specifically for the Protoss race. My mo-
tivation for selecting Protoss was to limit the number of competencies that needed to be
implemented in order to investigate learning capabilities in an agent. Generally, Protoss is less
susceptible to early aggression than Terran or Zerg, which reduces the amount of authoring
necessary to build a system capable of surviving until the mid-game phase. In order to explore
capabilities such as strategy adaptation, it is necessary for matches to progress into the later
stages of the game. While the behavior library is specific to the Protoss race, a number of the
learning capabilities are applicable to the other races. The main challenge in applying EISBot
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Figure 42: The components in the EISBot implementation include the ABL reactive planner, a particle
model for state estimation, and GDA subtasks for strategy selection and monitoring. The ex-
ternal components operate asynchronously from ABL and coordinate using working memory.
All decisions made by external components are executed through ABL behaviors.

to play a different StarCraft race is authoring the ABL behavior library to support race-specific
gameplay.

The EISBot implementation interfaces the ABL reactive planner with external components
that implement the GDA subtasks and track enemy units. The components in the system are
shown in Figure 42. The reactive planner manages gameplay across all gameplay scales and
is responsible for executing actions selected by the external components. The GDA subtasks
manage strategy selection and monitoring, and operate at the strategy scale, while the particle
model manages state estimation and operates at the reconnaissance scale. Each of the com-
ponents operates asynchronously and coordinates through working memory. The resulting
system integrates estimation, adaptation, and anticipation capabilities across multiple scales.

6.4.1 Behavior Library

The core of EISBot’s functionality is implemented in the ABL planning language. An ABL agent
selects actions to perform and goals to pursue by retrieving behaviors from the behavior library.
The behavior library is a hand-authored collection of behaviors that specify how to accomplish
goals. EISBot’s top-level goal is accomplished by a root behavior that spawns a number of
managers. Each manager actively pursues a number of subgoals, which are accomplished
through further subgoaling. The roles of the different managers are described in Section 4.3.
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A visualization of a subset of EISBot’s goal hierarchy is shown in Figure 43. It shows that the
agent’s top-level goal is accomplished by a number of managers which further decompose
subgoals into specialized tasks. A number of managers in EISBot are implemented as behaviors
that encode rules-of-thumb, such as worker production. McCoy and Mateas identify several of
these rules [61].

The ABL managers can operate independently of the external components. In the base agent
configuration, ABL behaviors are responsible for all decision making aspects of gameplay. In
configurations with external components, the ABL behaviors that duplicate tasks performed
by external components are disabled using the behavior locking pattern. Additional details on
the different configurations of EISBot are presented in Section 7.1.

One of the issues that arises when authoring an ABL agent is determining when to stop
authoring additional behaviors. Expert StarCraft gameplay requires a variety of different strate-
gies and tactics, and a large number of behaviors need to be authored to in order to encode
these actions. Capturing all expert gameplay behavior in StarCraft, for even small tasks, is
a substantial authorial burden. My approach for authoring the behavior library was to first
develop a base agent capable of playing complete games, and then focus on subtasks that re-
quire additional attention. This section describe managers in EISBot that involved substantial
authoring effort.

The Strategy Manager is responsible for strategy selection, which involves deciding which
buildings to construct, units to produce, and upgrades to research. During start up, the agent
selects a build order from a collection of opening strategies. The build order contains a se-
quence of production actions, where each production action is indexed by a supply count. The
manager also includes behaviors that are performed if the agent accumulates excess resources.
A majority of the strategy manager is disabled when the GDA subtasks are used, because
strategic plan selection is performed by the external components.

The primary task of the Tactics Manager is to create and manage squads of combat units.
The manager forms a new squad when a target number of idle combat units are present in the
game. Each squad is managed independently and attacks and retreats as a group. Squads are
also monitored to ensure that the units do not get too spread out while moving to destinations.
A squad formed during gameplay is shown in Figure 44. An attacking squad is ordered to retreat
if the enemy threat in the immediate area is too large. Squads retreat toward one of the agent’s
bases and can be merged with newly formed squads. The manager also handles caster and
support units, such as high templar and observers. Support and caster units are not assigned
to squads, but are assigned orders to follow squads. Caster units perform spells when enemy
units are in proximity, and observers move to reveal nearby cloaked units. Micromanagement
behaviors are performed by the tactics manager and implemented using the unit subtask
pattern. However, the manager does not support transport units.

The Income Manager is responsible for worker units, which perform a variety of different
tasks. Worker units are used for gathering resources, constructing structures, scouting, and
defending. The unit subtask pattern is used to temporarily assign worker units to new tasks.
In order to prevent worker units from being assigned conflicting tasks, the manager tracks
the current task of each worker and follows a set of rules that defines which tasks can be
interrupted. The manager also includes behaviors for producing additional worker units. The
manager continues to produce worker units at a base until a quota is met, or resources are
depleted.
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Figure 43: The system decomposes gameplay into subtasks, where each task is handled by a manager.
This visualization shows a subset of EISBot’s goal hierarchy. The ABT instantiated during
runtime is much larger, because new goals are spawned during gameplay and some goals are
pursued recursively.
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Figure 44: Combat units in EISBot are assigned to squads, which attack and retreat as a group. Support
units are not assigned to squads directly, and instead follow active squads.

The Reconnaissance Manager performs scouting behaviors and tracks enemy locations. The
manager interacts with the particle model in order to determine if scouting is necessary and
to find candidate locations to attack. The manager performs scouting by requesting a worker
unit from the income manager and assigning it a set of locations to visit. As the scouting unit
encounters enemy units, new enemy unit observations are added to the particle model. A
visualization of the particle model during gameplay is shown in Figure 45. The particles track
the locations and types of enemy units. The manager also implements scattering behaviors for
combat units if there are no candidate locations to attack.

A subset of the behaviors in EISBot are used to constrain the actions selected by external
components. One of the constraints enforced by the production manager is that duplicate
technology buildings are not produced. This situation can occur during external plan retrieval
and is generally a wasteful utilization of resources, because producing a duplicate technology
structure does not enable new unit types, buildings, or upgrades. One of the reasons that
the retrieval mechanism results in duplicate structures is that gameplay demonstrations are
applied to new game situations, and the agent retrieves from multiple demonstrations during a
single game. Another constraint enforced by the income manager is requiring a minimum time
between expansions, to ensure that the agent does not invest excessive resources in expanding.
These behaviors enable EISBot to interface with learned gameplay models, while avoiding
duplicate actions that would decrease the gameplay performance of the system. Applying
these constraints is a form of knowledge engineering, where the types of actions retrieved for
execution are constrained based on background knowledge of StarCraft gameplay.
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Figure 45: The agent maintains candidate enemy locations using a particle model. These estimations
include the locations of structures and enemy units.

6.4.2 Goal-Driven Autonomy

The agent starts a game by selecting an initial strategic goal, known as the build order, which
becomes the agent’s active goal. In the current implementation, the initial goal is selected by
the strategy manager, but can also be specified via a Java system property. The active goal is
passed to the goal manager, which is implemented in the ABL reactive planning language [107].
The different components in the system communicate using the reactive planner’s working
memory as a blackboard [36]. The reactive planner is responsible for performing the actions
in the game necessary to achieve the goal state. EISBot retrieves these actions directly from
traces, rather than using a generative planner.

EISBot invokes the GDA subtasks upon completion of the initial goal. During this process,
the agent generates an explanation of the opponent’s future game state and builds expectations
of anticipated unit and building types. For example, the agent may expect the opponent to
construct a Starport, and train a fleet of Valkyrie aircraft. This anticipated game state is passed
to the goal formulator, which selects the next strategic goal for the agent to pursue. In this
example, the agent would retrieve similar game situations in which air units are produced by
the opponent and formulate a goal to counter air units. The retrieved goal state is then passed
to the goal manager, becoming the current active goal, and the expectation of an opponent
Starport is passed to the discrepancy detector.

After formulating a new goal and set of expectations, the agent enters a plan monitoring
phase. During this process, the agent executes actions to pursue the active goal and checks for
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discrepancies. For example, if the agent observes an opponent Starport, then the expectation
is validated and the agent continues to pursue its current goal. However, if the agent does not
observe an opponent Starport after a discrepancy period has expired, then the expectation
becomes invalid, triggering a discrepancy. Upon detecting a discrepancy or achieving the
current goal, the agent invokes the explanation generation subtask. Because StarCraft enforces
partial observability through a fog-of-war, it is possible for the system to incorrectly detect
discrepancies due to insufficient vision of the opponent state.

There are three free parameters in the GDA implementation: the planning window size, n,
specifies the size of plans resulting from goal formulation, the look-ahead window size, m,
specifies how far to look-ahead at opponent actions, and the discrepancy period, δ, specifies a
buffer period for detecting discrepancies. In order to find suitable values for these parameters,
I ran an ablation study in which GDA subtasks are individually integrated into the agent.

6.5 S U M M A R Y

This chapter explores methods for integrating gameplay models learned from demonstration
with reactive planning. The agent architecture includes the ABL reactive planner, a Java mid-
dleware layer, and learning components. I present four ways to interface external components
with ABL: augmenting working memory, external plan generation, external goal formulation,
and behavior activation. Each of these integration approaches uses ABL’s working memory to
facilitate communication between different components in the agent. The resulting system,
EISBot, incorporates a library of hand-authored ABL behaviors, a particle model for tracking
enemy units, and an implementation of the GDA conceptual model for strategy selection and
monitoring.

In order to support coordination between different learning components in the system,
I explored two versions of the GDA model. In the first version, each of the GDA subtasks is
implemented as a collection of hand-authored ABL behaviors. In the second version, each
of the GDA subtasks is implemented using models learned from demonstrations. Applying
the GDA model enables the agent to build expectations of opponent actions, detect when
discrepancies occur, generate explanations of future opponent actions, and formulate new
goals to pursue. The GDA subtasks are used for selecting strategies for EISBot to pursue and to
detect when new strategies need to be formulated.



7
E VA L UAT I O N

The main objective of this thesis is to identify the capabilities necessary for expert StarCraft
gameplay and to realize these capabilities in a game-playing agent. I argue that players demon-
strate estimation, adaptation, and anticipation capabilities during gameplay, and have applied
AI methodologies to perform each of these tasks. In addition to emulating these individual ca-
pabilities, a complete game-playing agent needs to also integrate these capabilities in real time.
My hypothesis is that expert StarCraft players utilize several distinct reasoning capabilities
during gameplay. In order to evaluate my hypothesis, I make the following claim:

Reproducing expert-level StarCraft gameplay requires integrating heterogeneous
reasoning capabilities.

To test this claim, I evaluate ablations of EISBot against human and computer opponents.
In order to determine the performance of EISBot with respect to human experts, the system

is evaluated in complete games of StarCraft. The BWAPI interface that EISBot uses resembles
the GUI presented to human players, and provides the same affordances. The agent is not
given any additional game state information that is not presented to players, but the agent is
capable of perceiving all map state information without the need to pan the screen. I use two
metrics for evaluating the performance of EISBot. Versus computer opponents, win ratio is
used to evaluate the performance of the system. One of the problems in using this metric is
that different pools of opponent bots result in different win ratios for the system. To account for
this problem, versus human opponents a ladder score is used to evaluate EISBot. The ladder
score provides an intrinsic rating, which is described in Section 7.2.

A number of EISBot experiments are presented in previous work [106, 107, 109]. Each of these
experiments focused on integrating an additional component with the reactive planner. One of
the limitations of this analysis is that EISBot was evaluated against only computer opponents.
This limitation of evaluating against only computer opponents is a general characteristic of
prior RTS research, and therefore related work makes no claims of human-level performance.
Additionally, with the exception of the evaluation of different particle models [109], my previous
experiments provided the agent with complete game state information. In more recent work,
I evaluated EISBot against human opponents while enforcing imperfect information [110],
but did not incorporate the learning GDA subtasks. The experiments presented in this section
evaluate the complete EISBot system, integrated with external learning components, in an
imperfect information environment, against human and computer opponents.

This chapter presents two sets of experiments that evaluate the performance of EISBot. In
the first experiment, ablations of EISBot are tested against other StarCraft bots. The first set of
experiments are also used to select parameters for components in the GDA subtasks. In the
second experiment, ablations of EISBot are tested against human opponents on a StarCraft
ladder server. The results of these experiments are used to compare the performance of EISBot
with expert players.
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7.1 A B L AT I O N S T U D I E S

To evaluate my claim that StarCraft requires integrating distinct reasoning capabilities, I per-
formed ablation studies of EISBot in which external reasoning components are disabled. The
goal of these experiments is to demonstrate that integrating additional reasoning capabilities
into the agent improves its win ratio. The first study evaluates different configurations of the
particle model, while the second study evaluates different configurations of the GDA subtasks.
In these studies, EISBot is evaluated against computer opponents that execute relatively fixed
strategies. These experiments are used to evaluate EISBot, as well as select parameters for the
GDA components.

There are two sources of computer opponents for StarCraft: the built-in AI, and bots devel-
oped by AI researchers and hobbyists. One of the motivations for third-party StarCraft AI is the
StarCraft AI Competition that is organized as part of the AIIDE conference1. Over the past two
years, over two dozen bots have been submitted to the competition, resulting in a collection
of bots available for analysis. For the experiments presented here, I evaluated EISBot against
the following bots from the 2011 StarCraft AI competition: Aiur, SPAR, Cromulent, Nova, and
BTHAI. These are bots that demonstrated similar win ratios to EISBot, and this subset of bots
does not include the best performing or worst performing bots from the 2011 competition. I
also evaluated EISBot versus all three races of the built-in AI.

The first study evaluated the performance of EISBot with four different particle model
configurations. These mirror the models used in off-line analysis in Section 5.3.4 with one
modification: the perfect tracker was replaced by a perfect information model, which is granted
complete game state information. With the exception of the particle model policy, all other
EISBot settings and behaviors were held fixed. I evaluated the following models:

• Null Model: A particle model that never spawns particles.

• Default Model: A model in which particles do not move and do not decay, providing a
last known position.

• Optimized Model: A model with weights selected from the optimization process.

• Perfect Information: A particle model with complete game state information.

Each model was evaluated against all opponent and map permutations in three game match
ups. The map pool consisted of a subset of the maps used in the 2011 AI competition: Python
and Tau Cross. Win ratios for the different models are shown in Table 12. Overall, the optimized
particle model had the highest win ratio by over 10%. Given these results, the optimized particle
model was selected as the best performing model and used in all further experiments.

A surprising result was that the perfect information model did not perform best, since it has
the most accurate information about the positions of enemy forces. The most likely cause of
this result was the lack of scouting behavior performed when utilizing this model. Since the
agent has perfect information, it does not need to scout in order to populate working memory
with particles. Scouting units improved the win rate of the agent by distracting the opponent,
such as diverting rush attacks.

The second study evaluated the performance of EISBot with different GDA subtasks enabled.
The ablation study evaluated four versions of the agent. In each experiment, I introduced an

1 http://www.StarCraftAICompetition.com

http://www.StarCraftAICompetition.com


7.1 A B L AT I O N S T U D I E S 99

Table 12: The first study evaluated the performance of different particle model configurations. The win
ratios against the built-in AI and competition bots show that the optimized model performed
best overall.

Versus Versus Versus

Protoss Terran Zerg Overall

Null Model 0.50 0.75 0.75 0.67

Default Model 0.58 0.75 0.67 0.67

Optimized Model 0.75 0.75 0.83 0.78

Perfect Information 0.50 0.83 0.67 0.67

additional subtask of the GDA model into the agent. I evaluated the following configurations
of the system:

• Base Agent: A base version of the agent with a fixed strategy goal and no GDA subtasks.
All strategy selection and monitoring is implemented as ABL behaviors. ABL behaviors
that operate on expectations are disabled.

• Formulator: A version of the agent that integrates the goal formulation subtask, with
no look ahead or discrepancy detection. The input to the goal formulator is the current
game state, rather than an anticipation of future game state caused by the opponent.
Goal formulation is triggered only when the current plan completes. ABL behaviors that
operate on expectations are disabled.

• Predictor: A version of the agent that incorporates explanation generation and goal
formulation, but no discrepancy detection. Goal formulation is triggered only when the
current plan completes.

• GDA Agent: A version of the agent implementing the complete GDA model. Goal formu-
lation is triggered by plan completion and discrepancy detection.

Each experiment introduces a new GDA subtask into the agent. I used a greedy hill-climbing
approach for selecting parameter values for the GDA subtasks in the system. The map pool
consisted of six maps from the competition, which support two to four players and encour-
age a variety of play styles. For each trial in the experiments, I evaluated EISBot against all
permutations of bots and maps, resulting in 48 games.

In each GDA experiment, I selected a different initial build order for the agent. I selected
different initial build orders in order to demonstrate improvements in the gameplay perfor-
mance of the system using the GDA model. There are game situations in which using the GDA
model does not improve the gameplay performance of the system, because the outcome of
the game is determined before any of the GDA subtasks are invoked. This situation can arise
in StarCraft, because the game enforces partial observability through the fog-of-war and the
agent’s initial goal may be dominated by the opponent’s initial goal. In StarCraft, losing a game
based solely on initial goal selection is referred to as a build-order loss. One of the ways expert
players deal with this aspect of gameplay is by building expectations of opponent build orders,
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and by executing build orders that are unlikely to result in a build order loss. To prevent the
agent’s win rate from plateauing due to this aspect of RTS gameplay, I evaluated a variety of
initial goals in the experiments. Because different initial goals are assigned to the agent, the
win ratios reported in each experiment should not be directly compared to win ratios in other
experiments. A direct comparison of the different agent configurations utilizing the same initial
build order is presented in the fourth experiment. Additionally, the experiments presented in
the user study compare the agent using the same build order.

In the first experiment, I evaluated the formulator agent with various planning window sizes.
I also evaluated the base agent, represented by the formulator agent with a planning window
of size 0. Results from the experiment are shown in Table 13. The agent performed best with
a planning window of size 15. With smaller window sizes the agent often retrieved duplicate
production actions resulting in wasted resources. With larger window sizes, goal formulation is
performed less frequently.

The second experiment evaluated the predictor agent with various look-ahead window sizes
and a fixed planning window size of 15. I also evaluated the formulator agent, represented by
the predictor agent with a look-ahead window of size 0. Results from the experiment are shown
in Table 14. The agent performed best with a look-ahead window size of 10. Incorporating
predictions helped the agent prepare for opponent strategies. With smaller window sizes, the
agent was unable to anticipate opponent actions in time to develop counter strategies, while
large window sizes resulted in the agent employing counter strategies too early, resulting in
wasted resources.

In the third experiment, I evaluated the complete GDA agent with various discrepancy
period sizes, and planning window and look-ahead windows of size 15 and 10. I also evaluated
the predictor agent, represented by the GDA agent with a discrepancy period of ∞. Results
from the experiment are shown in Table 15. The agent performed best with a discrepancy
period of 30 seconds. Discrepancy detection enabled the agent to respond to critical game
situations, such as formulating goals to build detector units in order to reveal cloaked units.
When using larger discrepancy periods, the agent rarely detected discrepancies that trigger
new goals, while smaller discrepancy periods resulted in the same problems as small planning
window sizes.

The fourth experiment evaluated the different configurations of the agent using the same
initial goal, providing a direct comparison of the different agent configurations. Results from
the experiment are shown in Table 16. The results show that each additional GDA subtask
integrated into the agent improved the overall system performance; the agent has the highest
win ratio when utilizing the complete GDA model.

EISBot had varying success against each of the opponent agents. Win rates versus individual
opponents during the fourth experiment are shown in Table 17. Five of the opponents were
dominated by EISBot, and all ablations of the system achieved 100% win rates versus these
opponents. Against these opponents, the GDA subtasks for anticipating opponent actions
and triggering goal formulation were not necessary to win. Out of the five opponents that
were dominated by EISBot, only one of the opponent bots lost as a direct result of build order
selection. The BTHAI bot rushes for early cloaking units and was defeated in each game before
these units could be utilized. In the other match ups, the opponent bots lost primarily due to a
lack of economic and technology expansion, and weak tactics. Against these opponents, the
ability to perform micromanagement behaviors while also pursuing technology and economic
expansion goals enabled EISBot to consistently win games.
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Table 13: Win ratios from the goal formulation experiment show that the agent performed best with a
planning window size of 15 actions.

Planning Win

Window Size (n) Ratio

0 0.73

1 0.79

5 0.88

10 0.85

15 0.91

20 0.88

Table 14: Win ratios from the opponent prediction experiment show that the agent performed best
using a look-ahead window of 10 actions.

Look-Ahead Win

Window Size (m) Ratio

0 0.71

5 0.75

10 0.79

15 0.73

20 0.69

Table 15: Win ratios from the discrepancy detection experiment show that the agent performed best
with a discrepancy period of 30 seconds.

Discrepancy Win

Period (δ) Ratio

∞ 0.81

60 0.83

30 0.92

15 0.81
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Table 16: The fourth experiment evaluated all of the agent configurations using the same initial goal.
The agent performed best when using the complete GDA model.

Win

Agent Ratio

Base 0.73

Formulator 0.77

Predictor 0.81

GDA 0.92

Table 17: EISBot had varying success against individual opponents in the fourth experiment. The base
version performed worst, while the complete GDA version improved in performance versus
three of the opponent agents.

Base Form. Pred. GDA

Blizzard Protoss 0.14 0.33 0.50 0.83

Blizzard Terran 1.00 1.00 1.00 1.00

Blizzard Zerg 1.00 1.00 1.00 1.00

Aiur 0.00 0.00 0.00 0.50

SPAR 1.00 1.00 1.00 1.00

Cromulent 1.00 1.00 1.00 1.00

Nova 0.67 0.83 1.00 1.00

BTHAI 1.00 1.00 1.00 1.00

Overall 0.73 0.77 0.81 0.92

Against three of the opponents, incorporating additional GDA subtasks improved the perfor-
mance of EISBot. The largest win ratio margin occurred versus the Blizzard Protoss AI. This
opponent demonstrated the widest variety of strategies, and using the GDA model enabled the
agent to effectively respond to most of the encountered situations. Nova executes a strategy
that required the agent to build detection units, and incorporating explanation generation
enabled EISBot to anticipate this situation. The largest improvement was demonstrated versus
Aiur with discrepancy detection enabled. However, the results versus the Blizzard Protoss AI
show that each of the GDA subtasks improved the performance of EISBot.

The outcomes of the ablation studies show that EISBot performed best when using the
optimized particle model and all of the GDA subtasks. Adding each GDA subtask to the agent
individually also provided a method for selecting parameters for each of the GDA components.
The parameters that performed best are used in all further experiments. One of the issues in
this evaluation is that different build orders were used for evaluating each of the GDA subtasks.
An additional problem is that using different sets of opponents for evaluation result in different
win ratios for EISBot. While the fourth experiment compared each of the GDA configurations
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using the same build order, the reported win ratio is relative to the opponent bots used for
evaluation. A key limitation of evaluating against AI opponents is that there is a small set of
bots available for analysis and the performance of these bots versus human players is unknown.
To determine the performance of the agent with respect to expert players, it is necessary to
also test the system against human participants.

7.2 U S E R S T U D Y

My central claim is that reproducing expert-level performance for RTS gameplay requires
integrating heterogeneous reasoning capabilities. Currently, humans are the only source of
expert gameplay in this domain. In order to support the claim that a StarCraft agent performs
at an expert level, it is necessary to evaluate the performance of the system with human players.
The objective of evaluating EISBot versus human opponents is also motivated by expressive AI
[58], which strives to understand the interaction between AI systems and players.

In order to test my claim that integrating heterogeneous reasoning capabilities is necessary
for expert RTS gameplay, I conducted an ablated user study. An ablated user study is an analysis
of a system that integrates human participants in the evaluation. To perform the study, I
evaluated different ablations of EISBot versus human participants. The outcome of this study
enables ablations of the system to be compared with respect to expert human players. My
hypothesis is that versions of EISBot that integrate additional reasoning components will
perform better than the ablated versions versus human players.

To perform the user study, I hosted matches on the International Cyber Cup (ICCup)2. ICCup
is a third-party ladder server that assigns players a score based on wins and loses. The ICCup
score is similar to the Elo score used to rank players in chess. It is an intrinsic rating and enables
players to discuss their level of skill independent of specific opponents. Additionally, the ICCup
score can be used to directly compare the gameplay performance of humans and agents. I
use ICCup score as the primary metric for evaluating EISBot versus human players, because
it reduces the impact of specific opponents on the overall evaluation of the system. On the
ICCup server, players are assigned a letter grade based on the ICCup score. At the lower ranges,
the following ranks are assigned to players:

• E: 0-500 points, a novice player.

• D-: 500-100 points, an amateur player.

• D: 1000-2000 points, a competitive amateur player.

• D+: 2000-3000 points, a competitive amateur player.

The upper bound of the rating scale is 15,000, which is reached only by top professional players.
Players begin with a provisional rating of 1,000 points and gain 100 points for a win against an
evenly ranked opponent and lose 50 points for a loss against an evenly ranked opponent. The
server implements a season system, which resets player scores every three months.

I developed a script for automating the process of running games on ICCup. The script
launches StarCraft, logs in to ICCup, hosts a match, waits for an opponent, and then starts the
game. The system has no control over the race selected by the opponent and does not restrict

2 http://ICCup.com

http://ICCup.com
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Table 18: The first trial evaluated EISBot on Longinus. This table shows the minimum, maximum, final,
and average ICCup scores achieved by each of the ablations. On Longinus, the Predictor
version performed best, with an average score of 1111.

Minimum Maximum Final Average

Base 629 1196 1023 942

Formulator 761 1134 761 980

Predictor 729 1369 1169 1111

GDA 631 1207 1021 952
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Figure 46: In the first trial, each of the GDA ablations was evaluated on the map Longinus over 50 games.
The results show that the Predictor version performed best and the Formulator version
performed worse. Overall, there was little variation among the performances of the different
EISBot versions.

the rank of opponent players. At the start of the match, the system announces that it is a bot
and the opponent player has the option of leaving the match if they do not want to participate
in the experiment. I also authored behaviors in EISBot to support well mannered gameplay.
The agent ends the game if there are less than three worker units or the primary command
center is destroyed. If a defeat situation is detected by EISBot, the agent acknowledges defeat
and ends the game.

The user study consisted of three trials. Each trial evaluated EISBot on a different map, and
all other variables were held fixed. The map pool is a subset of the maps used in the 2011
StarCraft AI competition. During each trial, the four different GDA ablations were evaluated
over 50 games. The same build order was used across all maps, ablations, and opponent races.
The build order is a two gateway opening that produces six zealots while upgrading to the
second technology tier. If the agent crashes during a game, the game is counted as a loss by the
server.
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Table 19: The results from the second trial show that EISBot overall performed worse on the map Python.
The final rating for each of the versions was E, except for the complete EISBot version, which
achieved a rating of D-.

Minimum Maximum Final Average

Base 268 1075 268 599

Formulator 330 1015 330 718

Predictor 292 1000 509 555

GDA 595 1109 872 860
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Figure 47: The second trial evaluated each of the GDA ablations on the map Python over 50 games.
The results shows that each version of EISBot that incorporated additional GDA subtasks
achieved a higher final score. In this trial, there was a noticeable difference in performance
between the complete EISBot version and ablated versions.

The first trial evaluated EISBot on the map Longinus. Longinus is a three-player map with
notable features including a high middle ground, double gas expansions, and easily-wallable
natural expansions. Results from the first trial are shown in Table 18 and Figure 46. In this trial,
the Predictor version performed best with an average score of 1111, while the Base version
performed worst with an average score of 942. Overall, there was little variation among the
performance of the different versions of EISBot.

The second trial evaluated EISBot on Python. Python is a four-player map with easy to
defend ramps, wide expansion entrances, and two island expansions. Results from the second
trial are shown in Table 19 and Figure 47. During this trial, the complete version outperformed
the ablated versions. The final rating for each of the versions was E, except for the complete
EISBot version, which achieved a rating of D-. Overall, EISBot performed worse during this
trial than the previous trial. One of the reasons for this decrease in performance is that the
main bases on Python have easy to defend ramps, and EISBot lacks sufficient ABL behaviors
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Table 20: ICCup scores from the third trial show that EISBot performed best with all GDA subtasks. All
versions greatly outperformed the base agent.

Minimum Maximum Final Average

Base 312 1150 462 669

Formulator 841 1364 1266 1078

Predictor 878 1338 1191 1145

GDA 938 1801 1502 1293
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Figure 48: The third trial evaluated each of the GDA ablations on the map Tau Cross over 50 games. In
this trial, there was a noticeable difference between the base version and the other ablations.
The complete GDA agent performed best, while the Formulator and Predictor versions
achieved similar ratings.

for effectively attacking up ramps. Another issue encountered during this trial was that it was
performed at the start of an ICCup season. Each player’s score is reset at the start of an ICCup
season, which means that EISBot was often playing against opponents with a much higher
skill than what their score reflected.

The third trial evaluated EISBot on the map Tau Cross. Tau Cross is a three-player map with
notable features including an open and buildable center, slightly longer rush distances, and
a small natural choke point. Results from the third trial are shown in Table 20 and Figure 48.
EISBot overall performed better in this trial, and all ablations achieved a D rating, expect for
the base version. There was a large difference between the base version and other ablations.
The Predictor and Formulator versions maintained a score close to the starting score, the Base
version consistently decreased in score, and the complete version consistently increased in
score.

The overall results for the user study are shown in Table 21. I computed an overall score for
each ablation as the mean of the average score achieved during each trial. The goal of averaging
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Table 21: The overall results of the ablated user study show that the versions of EISBot that incorporated
additional GDA subtasks performed better versus human opponents.

Agent Longinus Python Tau Cross Overall

Base 942 599 669 737

Formulator 980 718 1078 925

Predictor 1111 555 1145 937

GDA 952 860 1293 1035

Table 22: Percentile ranks achieved by the complete agent on ICCup after 50 games.

Trial Final Score Percentile Rank

Longinus 1021 32nd

Python 872 8th

Tau Cross 1502 66th

Average 1131 48th

over several trials is to compensate for the lack of control over opponent races and skill levels,
as well as factors such as the season system that resets player scores. Overall, the ablations
achieved a ranking of D-, which corresponds to an amateur StarCraft player. The results shown
here are for a specific build order, and different build orders would result in different scores.
Overall, the GDA version performed best with an average ICCup score of 906, while the base
version performed worst with a score of 771.

During the user study, 17,670 players were active on ICCup. The percentile ranks achieved by
EISBot using the complete GDA model are shown in Table 22. The percentile rank is computed
using the final score reached after 50 games. In the best performing trial, EISBot outperformed
66% of the players on the server. Based on the average final score over three trials, EISBot
outperformed 48% of competitive human players on ICCup.

To test my hypothesis that expert StarCraft gameplay requires integrating heterogeneous
reasoning capabilities, I performed an ablated user study involving human participants on
the ICCup ladder server. The results from these experiments show that adding GDA subtasks
to the agent did improve the performance of the system. While these results support my
claim, the system currently performs at a much lower ranking than expert players. One of the
challenges in evaluating complete game-playing agents is that there are several ways that the
system can fail, and performing well in this domain requires achieving mastery in a variety
of different skills. While EISBot currently performs at only the level of an amateur player, the
results presented here support the claim that adding anticipation, adaptation, and estimation
capabilities to the agent improve the performance of the system in a complete game-playing
task, against human opponents.

The results presented in this thesis provide a direct comparison of EISBot with competitive
human players. To the best of my knowledge, no previous RTS agents in the literature have
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evaluated performance with respect to human players. Therefore, the results presented here
provide a high-water mark for machine play.

7.3 S U M M A R Y

To test my claim that StarCraft requires integrating heterogeneous reasoning capabilities,
I performed two ablation studies and a user study. In the first ablation study, I evaluated
different particle model configurations. The second ablation study evaluated EISBot versions
with different GDA subtasks enabled. Both of these studies evaluated performance against
the build-in AI of StarCraft and bots from the StarCraft AI Competition. The results showed
that the agent performed best using the optimized particle model with all of the GDA subtasks
enabled. Another purpose of the ablation studies was that it provided a method for selecting
GDA parameters.

The user study evaluated different EISBot configurations versus human opponents on the
ICCup StarCraft ladder server. The server assigns players a score based on their win and loss
record, which provides an intrinsic measurement of gameplay performance. I performed three
trials, where each trial evaluated the GDA ablations on a different map. The results showed
that including additional GDA subtasks in the agent improved its performance versus human
opponents. Currently, EISBot performs at the level of an amateur player.



8
C O N C L U S I O N S

In this thesis, I explored methods for building human-level AI for StarCraft. StarCraft gameplay
is a complex process and involves managing several distinct tasks. I claim that reproducing
expert-level StarCraft gameplay requires integrating heterogeneous reasoning capabilities.
In order to support these capabilities in a real-time agent, I integrated a reactive planning
agent with gameplay models learned from demonstrations. The resulting system, EISBot,
plays complete games of StarCraft and emulates the adaptation, anticipation, and estimation
capabilities demonstrated by human players.

I investigated three research questions, with the objective of identifying and realizing the
capabilities necessary for expert RTS gameplay in an agent:

1. What competencies are required for expert RTS gameplay?

2. Which competencies can be learned from demonstrations?

3. How can distinct competencies be integrated in a real-time agent?

The contributions of this work are idioms for authoring multi-scale agents, techniques for
learning from gameplay demonstrations, and methods for integrating learning algorithms
in a reactive planning agent. An additional outcome of this work is the first evaluation with
competitive human participants, providing a high-water mark for machine play.

My approach for answering the first question was to analyze professional-level StarCraft
gameplay and commentaries, study player created repositories of strategies and tactics, and
build upon previous work. Expert RTS gameplay is complex, and involves a combination of
deliberative and reactive decision making. Additionally, StarCraft requires the ability to simul-
taneously manage several interconnected tasks while pursuing higher-level goals. To support
these capabilities in an agent, I extended an integrated agent framework that decomposes
RTS gameplay into domains of competence[61]. Each manager is responsible for handling a
specific aspect of gameplay and coordinating with interrelated managers in the system.

I classify StarCraft gameplay as a multi-scale AI problem. It is a multi-task domain in which
actions are performed across different scales, tasks are interrelated and performance in each
task impacts other tasks, and actions and decision making occur in real-time. I advocate
reactive planning as a method for authoring agents that operate in multi-scale domains,
because it provides many of the mechanisms necessary for multi-scale reasoning. To support
the authoring of multi-scale agents, I propose reactive planning idioms that build upon the
ABL planning language. These idioms provide constructs for spawning daemon behaviors,
organizing agents as a collection of managers, producing and consuming messages, and
locking behaviors. I have applied these idioms to author a StarCraft agent that integrates
high-level strategic reasoning with reactive tactical reasoning.

My approach for answering the second question was to develop methods for learning from
StarCraft replays. The goal of these methods is to enable estimation, anticipation, and adapta-
tion capabilities in an agent. I presented three applications of gameplay demonstrations: model
training for classification and regression algorithms that identify the strategy an opponent is
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performing and estimate when specific technologies will be unlocked by a player, case-based
goal formulation for selecting strategies for the agent to pursue and anticipating the goals
of opponents, and model optimization for a particle model that tracks opponent forces. To
evaluate the different models, I performed offline experiments using replays collected from
professional players. One of the interesting outcomes of this analysis was that the strategy
prediction models exhibited foresight.

To answer the third research question, I investigated methods for integrating learned game-
play models with reactive planning. I presented four ways to interface external components
with the ABL agents: augmenting working memory, external plan generation, external goal
formulation, and behavior activation. Each of these integration approaches uses ABL’s working
memory to facilitate communication between different components in the agent. An addi-
tional way in which components are integrated in EISBot is through the goal-driven autonomy
conceptual model.

The resulting system, EISBot, incorporates a library of hand-authored ABL behaviors, a
particle model for tracking enemy units, and an implementation of the GDA conceptual model
for strategy selection and monitoring. In order to support coordination between different learn-
ing components in the agent, I explored methods for learning GDA subtasks from gameplay
demonstrations. Applying the GDA model enables the agent to build expectations of opponent
actions, detect when discrepancies occur, generate explanations of future opponent actions,
and formulate new goals to pursue. Each of the integrated components enables the agent to
realize additional capabilities: the reactive planner enables the system to select and monitor
plans, the particle model enables the agent to build estimations of opponent locations, and
the GDA subtasks enable the agent to generate anticipations of opponent actions and adapt to
new gameplay situations.

To test my claim that StarCraft requires integrating heterogeneous reasoning capabilities, I
performed two ablation studies and a user study. The results of the ablation studies showed
that the agent performed best using the optimized particle model with all of the GDA subtasks
enabled. The user study evaluated different EISBot configurations versus human opponents
on the ICCup StarCraft ladder server. The outcome of the user study demonstrated that in-
corporating additional capabilities into the system improved the agent’s performance against
human players. The results also demonstrated that EISBot currently plays at the level of a
amateur player.

8.1 D I S C U S S I O N

A result of this work is a game-playing agent that emulates a subset of human capabilities and
performs at the level of a competitive amateur player. However, there are several capabilities
that the system does not capture. Additionally, existing bots often outperform EISBot, and the
system has advantages over human opponents.

Human players demonstrate a broad range of reasoning capabilities during RTS gameplay.
While I have explored methods for emulating estimation, anticipation, and adaptation capa-
bilities, players also exhibit additional capabilities. In tournament matches, in which players
play multiple matches versus the same opponent, players select build orders based on the
opponent’s anticipated strategy and build orders executed during previous games. It is com-
mon for players to alternate build orders in tournament games to prevent the opponent from
formulating a dominant counter strategy. Tournament gameplay involves a form of meta-game
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adaptation that is not currently captured by EISBot, because EISBot maintains no history of
previous matches. One way of emulating this capability in EISBot is to record previous matches
and to inform the strategy selection process based on the performance of previously executed
strategies. Additionally, a boredom heuristic [100] could be used to prevent the system from
repeating recently selected strategies.

I evaluated the performance of EISBot versus human and computer opponents. While the
agent outperformed most of the bots in the ablation studies, the study did not include the
top performing bots from the StarCraft AI Competition. In the 2011 StarCraft AI Competition,
the submitted version of EISBot, which most closely resembles the base agent configuration,
placed 5th out of 13 participants. The tournament used a round-robin format in which each
bot played 30 games against each of the opponent bots. The winning submission, Skynet,
demonstrated excellent economy management, squad management, and attack timing. In the
2011 competition, Skynet defeated EISBot in 28 out of 30 games. While the results show that
Skynet outperformed EISBot and all other participants in the competition, it is unknown how
well the agent performs against human players.

The results from the competition show that existing AI methodologies can be leveraged to
author StarCraft agents with strong gameplay capabilities. In order to achieve this result, the
winning bot required a huge amount of knowledge engineering. One of the limitations of this
approach is that most of the agent’s behavior is hard coded, including building locations. While
generalization is not a direct objective of the competition, a subset of the participants have
explored methods for generalizing RTS capabilities. Luke Perkins introduced a map analysis
method that identifies regions and chokepoints, enabling agents to generalize to new maps [82].
The Overmind team introduced a threat-aware A* heuristic enabling the agent to generalize
to new tactical situations [12]. The UAlbertaBot team explored the application of deliberative
planning to strategy selection, potentially enabling the agent to generalize to all three StarCraft
races [22].

One of the objectives of this work was to develop an agent that interfaces with the game at the
same level as a human player. Currently, the system has two advantages over human players: it
can sense all visible game state without panning the camera, and it can simultaneously issue
orders to all units across the map. One way of limiting the first advantage would be to provide
the agent with screen capture data rather than direct game state access [55]. Dealing with
this constraint would require a mechanism for focusing attention on particular areas of the
map. One way of limiting the second advantage would be to restrict the number of actions,
or APM, allowed by the agent. Enforcing this constraint would prevent agents from exploiting
unit behaviors and minimize the advantage provided to bots.

8.2 F U T U R E W O R K

While I managed to build a system capable of amateur-level StarCraft gameplay, there is still a
large margin between the capabilities of EISBot and expert players. One way of closing this
gap is to author additional reactive planning behaviors, such as transport behaviors in EISBot.
Another approach is to learn additional competencies from demonstrations and explore
methods for adaptation across multiple scales. I identify the following directions for future
work:
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• Online Learning: One of the limitations of the methods presented in this thesis is that a
batch process is used for learning from demonstrations. In order to track the evolving
meta-game of StarCraft it is necessary to constantly learn new strategies and tactics.
The methods for building gameplay models presented in this thesis require an expert
to collect and maintain a case library. To overcome this limitation, future work could
explore methods for learning during gameplay or learning after each game. To effectively
incorporate new gameplay demonstrations, the system would need to be able to idenitfy
novel gameplay.

• Multi-Task GDA: I investigated the application of the GDA model to a single gameplay
task in EISBot. Future work could explore the application of goal-driven autonomy
to multiple gameplay tasks including strategy selection, economy management, unit
production, and scouting.

• Stylized Gameplay: Learning from demonstration can be applied to individuals or groups
of players. The models presented in this thesis are trained using demonstrations from a
large group of players, but the models could also be trained using demonstrations from
individual players. Future work could explore methods for capturing gameplay behavior
of specific players, in order to emulate stylized gameplay of professional players.

One of the limitations of my approach is that all examples in the case library are weighted
equally. One way to potentially improve case retrieval is to incorporate a performance measure
into the retrieval process. Cases that lead to improved game states are marked as more relevant
than cases that do not improve game state. One of the challenges in adding a performance
measure to cases is formulating an objective function that evaluates game state based on
partial information. Aha et al. explore a metric for RTS games based on difference in score
[3], which provides a measure of gameplay performance. Another approach is to incorporate
human experts into the evaluation process, in which the experts score retrieved cases based
on relevance.

Another direction for future work is to use GDA for identifying opportunistic goals, rather
than just responding to planning failures. The current system triggers goal formulation when
an expectation is violated, which enables the agent to respond to the situation with a new
goal. Opportunistic goals are promoted for execution when particular situations arise, such as
identifying a weakness in an opponent’s strategy. The use of opportunistic goals fits well with
the application of GDA to multiple subtasks. For example, during goal formulation for strategy
selection, the agent could promote economy management goals such as expanding.

Future work could also explore the use of learning from demonstration to enable new
types of gameplay experiences, such as emulating the gameplay style of a professional player.
Rather than learning from a collection of players, the agent could build gameplay models
using demonstrations from a particular player. In order for the system to resemble the player’s
behavior, it would be necessary to learn gameplay patterns across multiple subtasks. One of
the challenges in implementing this capability is learning from a much smaller demonstration
library. Additionally, the agent should be tuned to the player’s skill level in order to provide an
engaging gameplay experience.
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