
Data Science for Startups
Ben G Weber
2018-05-29



2



Contents

1 Introduction 5
1.1 Why Data Science? . . . . . . . . . . . . . . . . . . . 5
1.2 Book Overview . . . . . . . . . . . . . . . . . . . . . 6
1.3 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Tracking Data 9
2.1 What to Record? . . . . . . . . . . . . . . . . . . . . 10
2.2 Tracking Specs . . . . . . . . . . . . . . . . . . . . . 12
2.3 Client vs Server Tracking . . . . . . . . . . . . . . . 13
2.4 Sending Tracking Events . . . . . . . . . . . . . . . . 14
2.5 Message Encoding . . . . . . . . . . . . . . . . . . . 19
2.6 Building a Tracking API . . . . . . . . . . . . . . . . 20
2.7 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 21

3 Data Pipelines 23
3.1 Types of Data . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Evolution of Data Pipelines . . . . . . . . . . . 25
3.3 A Scalable Pipeline . . . . . . . . . . . . . . . . . . . 31
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 44

4 Business Intelligence 47
4.1 KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Reporting with R . . . . . . . . . . . . . . . . . . . . 49
4.3 ETLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Reporting Tools . . . . . . . . . . . . . . . . . . . . . 61
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 63

5 Exploratory Data Analysis 67
5.1 Summary Statistics . . . . . . . . . . . . . . . . . . . 68

3



4 CONTENTS

5.2 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Correlation Analysis . . . . . . . . . . . . . . . . . . 76
5.4 Feature Importance . . . . . . . . . . . . . . . . . . . 78
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 79

6 Predictive Modeling 81
6.1 Types of Predictive Models . . . . . . . . . . . . . . 81
6.2 Training a Classification Model . . . . . . . . . . . . 83
6.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 100

7 Productizing Models 103
7.1 Building a Model Specification . . . . . . . . . . . . 104
7.2 Batch Deployments . . . . . . . . . . . . . . . . . . . 106
7.3 Live Deployments . . . . . . . . . . . . . . . . . . . . 115
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 119

8 Experimentation 121
8.1 Staged Rollouts . . . . . . . . . . . . . . . . . . . . . 121
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 128

9 Recommendation Systems 131
9.1 R - Recommender Lab . . . . . . . . . . . . . . . . . 132
9.2 Java - Apache Mahout . . . . . . . . . . . . . . . . . 133
9.3 Scala - MLlib . . . . . . . . . . . . . . . . . . . . . . 133
9.4 SQL - Spark SQL . . . . . . . . . . . . . . . . . . . . 134
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 136

10 Deep Learning 137
10.1 Improving Shallow Problems . . . . . . . . . . . . . 139
10.2 Loss Functions in Keras . . . . . . . . . . . . . . . . 141
10.3 Evaluating Loss Functions . . . . . . . . . . . . . . . 143
10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 147



Chapter 1

Introduction

In 2017, I changed industries and joined a startup company where
I was responsible for building up a data science discipline. While
we already had a solid data pipeline in place when I joined, we
didn’t have processes in place for reproducible analysis, scaling up
models, and performing experiments. The goal of this book is to
provide an overview of how to build a data science platform from
scratch for a startup, providing real examples using Google Cloud
Platform (GCP) that readers can try out themselves.

This book is intended for data scientists and analysts that want
to move beyond the model training stage, and build data pipelines
and data products that can be impactful for an organization. How-
ever, it could also be useful for other disciplines that want a better
understanding of how to work with data scientists to run exper-
iments and build data products. It is intended for readers with
programming experience, and will include code examples primarily
in R and Java.

1.1 Why Data Science?

One of the first questions to ask when hiring a data scientist for
your startup is: how will data science improve our product? At
the past startup I worked at, Windfall Data, our product was data,
and therefore the goal of data science aligned well with the goal
of the company, to build the most accurate model for estimating

5



6 CHAPTER 1. INTRODUCTION

net worth. At other organizations, such as a mobile gaming com-
pany, the answer may not be so direct, and data science may be
more useful for understanding how to run the business rather than
improve products. However, in these early stages it’s usually bene-
ficial to start collecting data about customer behavior, so that you
can improve products in the future.

Some of the benefits of using data science at a start up are:

• Identifying key business metrics to track and forecast
• Building predictive models of customer behavior
• Running experiments to test product changes
• Building data products that enable new product features

Many organizations get stuck on the first two or three steps, and do
not utilize the full potential of data science. A goal of this book is
to show how managed services can be used for small teams to move
beyond data pipelines for just calculating run-the-business metrics,
and transition to an organization where data science provides key
input for product development.

1.2 Book Overview

Here are the topics I am covering in this book. Many of these
chapters are based on my blog posts on Medium1.

• Introduction: This chapter provides motivation for using
data science at a startup and provides an overview of the
content covered in this book. Similar posts include functions
of data science, scaling data science and my FinTech journey.

• Tracking Events: Discusses the motivation for capturing
data from applications and web pages, proposes different
methods for collecting tracking data, introduces concerns
such as privacy and fraud, and presents an example with
Google PubSub.

• Data pipelines: Presents different approaches for collecting
data for use by an analytics and data science team, discusses
approaches with flat files, databases, and data lakes, and
presents an implementation using PubSub, DataFlow, and
BigQuery. Similar posts include a scalable analytics pipeline
and the evolution of game analytics platforms.

1https://medium.com/@bgweber

https://medium.com/@bgweber


1.3. TOOLING 7

• Business Intelligence: Identifies common practices for
ETLs, automated reports/dashboards and calculating run-
the-business metrics and KPIs. Presents an example with R
Shiny and Data Studio.

• Exploratory Analysis: Covers common analyses used for
digging into data such as building histograms and cumula-
tive distribution functions, correlation analysis, and feature
importance for linear models. Presents an example analysis
with the Natality public data set. Similar posts include clus-
tering the top 1% and 10 years of data science visualizations.

• Predictive Modeling: Discusses approaches for supervised
and unsupervised learning, presents example classifica-
tion models, and methods for evaluating offline model
performance.

• Model Production: Shows how to scale up offline models
to score millions of records, and discusses batch and online
approaches for model deployment. Similar posts include Pro-
ductizing Data Science at Twitch, and Producizting Models
with DataFlow.

• Experimentation: Provides an introduction for testing
product deployments, discusses how to use staged rollouts
for running experiments, and presents an example analysis
with R and bootstrapping. Similar posts include A/B testing
with staged rollouts.

• Recommendation Systems: Introduces the basics of
recommendation systems and provides example implementa-
tions of recommender systems in four different programming
languages. Similar posts include prototyping a recommender.

• Deep Learning: Provides a light introduction to data sci-
ence problems that are best addressed with deep learning.
Demonstrates how deep learning can be applied to shallow
learning problems with custom loss functions and presents
an example for predicting home values.

1.3 Tooling

Throughout the book, I’ll be presenting code examples built on
Google Cloud Platform. I choose this cloud option, because GCP
provides a number of managed services that make it possible for
small teams to build data pipelines, productize predictive models,



8 CHAPTER 1. INTRODUCTION

and utilize deep learning. It’s also possible to sign up for a free
trial with GCP and get $300 in credits. This should cover most of
the topics presented in this book, but it will quickly expire if your
goal is to dive into deep learning on the cloud.

For programming languages, I’ll be using R for scripting and Java
for production, as well as SQL for working with data in BigQuery.
I’ll also present other tools such as R Shiny. Some experience with
R and Java is recommended, since I won’t be covering the basics
of these languages.

This book is based on my blog series “Data Science for Startups”2. I
incorporated feedback from these posts into book chapters, and au-
thored the book using the excellent bookdown package (Xie, 2018).
All of the code examples for this book, along with the R markdown
files used to author the text, are available online3.

2https://medium.com/p/80d022a18aec
3https://github.com/bgweber/StartupDataScience

https://medium.com/p/80d022a18aec
https://github.com/bgweber/StartupDataScience


Chapter 2

Tracking Data

In order to make data-driven decisions at a startup, you need to
collect data about how your products are being used. You also
need to be able to measure the impact of making changes to your
product and the efficacy of running campaigns, such as deploying
a custom audience for marketing on Facebook. Again, collecting
data is necessary for accomplishing these goals.

Usually data is generated directly by the product. For example, a
mobile game can generate data points about launching the game,
starting additional sessions, and leveling up. But data can also
come from other sources, such as an email vendor that provides
response data about which users read and click on links within
an email. This chapter focuses on the first type of data, where
tracking events are being generated by the product.

Why record data about product usage?

• Track metrics: You may want to record performance met-
rics for tracking product health or other metrics useful for
running the business.

• Enable experimentation: To determine if changes to a
product are beneficial, you need to be able to measure results.

• Build data products: In order to make something like a
recommendation system, you need to know which items users
are interacting with.

It’s been said that data is the new oil, and there’s a wide variety
of reasons to collect data from products. When I first started in

9



10 CHAPTER 2. TRACKING DATA

the gaming industry, data tracked from products was referred to as
telemetry. Now, data collected from products is frequently called
tracking.

This chapter discusses what type of data to collect about product
usage, how to send data to a server for analysis, issues when build-
ing a tracking API, and some concerns to consider when tracking
user behavior.

2.1 What to Record?

One of the questions to answer when deploying a new product is:

• What data should we collect about user behavior?

The answer is that it depends on your product and intended use
cases, but there are some general guidelines about what types of
data to collect across most web, mobile, and native applications.

• Installs: How big is the user base?
• Sessions: How engaged is the user base?
• Monetization: How much are users spending?

For these three types of events, the data may actually be generated
from three different systems. Installation data might come from a
third party, such as Google Play or the App Store, a session start
event will be generated from the client application, and spending
money in an application, or viewing ads, may be tracked by a
different server. As long as you own the service that is generating
the data points, you can use the same infrastructure to collect data
about different types of events.

Collecting data about how many users launch and log into a ap-
plication will enable you to answer basic questions about the size
of your user base, and enable you to track business metrics such
as DAU, MAU, ARPDAU, and D-7 retention. However, it doesn’t
provide much insight into what users are doing within an applica-
tion, and it doesn’t provide many data points that are useful for
building data products. In order to better understand user engage-
ment, it’s necessary to track data points that are domain or product
specific. For example, you might want to track the following types
of events in a multiplayer shooter game for consoles:



2.1. WHAT TO RECORD? 11

• GameStarted: tracks when the player starts a single or
multiplayer game.

• PlayerSpawn: tracks when the player spawns into the game
world and tracks the class that the user is playing, such as
combat medic.

• PlayerDeath: tracks where players are dying and get-
ting stuck and enables calculating metrics such as KDR
(kill/death ratio).

• RankUp: tracks when the player levels up or unlocks a new
rank.

Most of these events translate well to other shooter games and
other genres such as action/adventure. For a specific game, such
as FIFA, you may want to record game specific events, such as:

• GoalScored: tracks when a point is scored by the player or
opponent.

• PlayerSubstitution: tracks when a player is substituted.
• RedCardReceived: when the player receives a red card.

Like the prior events, many of these game-specific events can actu-
ally be generalized to sports games. If you’re a company like EA
with a portfolio of different sports titles, it’s useful to track all of
these events across all of your sports titles (the red card event can
be generalized to a penalty event).

If we’re able to collect these types of events about players, we can
start to answer useful questions about the player base, such as:

• Are users that receive more red cards more likely to quit?
• Do online focused players play more than single-player fo-

cused players?
• Do users play the new career mode that was released?

A majority of tracking events are focused on collecting data points
about released titles, but it’s also possible to collect data during
development. At Microsoft Studios, I worked with the user re-
search team to get tracking in place for playtesting. As a result,
we could generate visualizations that were useful for conveying to
game teams where players were getting stuck. Incorporating these
visualizations into the playtesting results resulted in a much better
reception from game teams.

When you first add tracking to a product, you won’t know of every
event and attribute that will be useful to record, but you can make



12 CHAPTER 2. TRACKING DATA

Figure 2.1: Ryse: Son of Rome Playtesting - Microsoft Studios
User Research

a good guess by asking team members what types of questions they
intend to ask about user behavior and by implementing events that
are able to answer these questions. Even with good tracking data,
you won’t be able to answer every question, but if you have good
coverage you can start to improve your products.

2.2 Tracking Specs

Some teams write tracking specifications to in order to define which
tracking events need to be implemented in a product. Other teams
don’t have any documentation and simply take a best guess ap-
proach at determining what to record. I highly recommend writing
tracking specifications as a best practice. For each event, the spec
should identify the conditions for firing an event, the attributes to
send, and definitions for any event-specific attributes. For example,
a session start event for a web app might have the following form:

• Condition: fired when the user first browses to the domain.
The event should not be fired when the user clicks on new



2.3. CLIENT VS SERVER TRACKING 13

pages or uses the back button, but should fire it the user
browses to a new domain and then back.

• Properties: web browser and version, userID, landing page,
referring URL, client timestamp

• Definitions: referring URL should list the URL of the page
that referred the user to this domain, or the application that
referred the user to the web page (e.g. Facebook or Twitter).

Tracking specs are a highly useful piece of documentation. Small
teams might be able to get away without having an official process
for writing tracking specs, but a number of scenarios can make
the documentation critical, such as implementing events on a new
platform, re-implementing events for a new backend service, or
having engineers leave the team. In order for specs to be useful,
it’s necessary to answer the following questions:

• Who is responsible for writing the spec?
• Who is responsible for implementing the spec?
• Who is responsible for testing the implementation?

In small organizations, a data scientist might be responsible for all
of the aspects of tracking. For a larger organization, it’s common
for the owners to be a product manager, engineering team, and
testing group.

2.3 Client vs Server Tracking

Another consideration when setting up tracking for a product is
determining whether to send events from a client application or
a backend service. For example, a video-streaming web site can
send data about which video a user is watching directly from the
web browser, or from the backend service that is serving the video.
While there are pros and cons to both approaches, I prefer setting
up tracking for backend services rather than client applications if
possible. Some of the benefits of server-side tracking are:

• Trusted Source: You don’t need to expose an endpoint on
the web, and you know that events are being generated from
your services rather than bots. This helps avoid fraud and
DDoS attacks.

• Avoid Ad Blocking: If you send data from a client appli-
cation to an endpoint exposed on the web, some users may



14 CHAPTER 2. TRACKING DATA

block access to the endpoint, which impacts business metrics.
• Versioning: You might need to make changes to an event.

You can update your web servers as needed, but often cannot
require users to update a client application.

Generating tracking from servers rather than client applications
helps avoid issues around fraud, security, and versioning. However,
there are some drawbacks to server-side tracking:

• Testing: You might need to add new events or modify exist-
ing tracking events for testing purposes. This is often easier
to do by making changes on the client side.

• Data availability: Some of the events that you might want
to track do not make calls to a web server. For example, a
console game might not connect to any web services during
a session start, and instead want until a multiplayer match
starts. Also, attributes such as the referring URL may only
be available for the client application and not the backend
service.

A general guideline is to not trust anything sent by a client applica-
tion, because often endpoints are not secured and there is no way to
verify that the data was generated by your application. But client
data is very useful, so it’s best to combine both client and server
side tracking and to secure endpoints used for collecting tracking
from clients.

2.4 Sending Tracking Events

The goal of sending data to a server is to make the data available
for analysis and data products. There’s a number of different ap-
proaches that can be used based on your use case. This section
introduces three different ways of sending events to an endpoint
on the web and saving the events to local storage. The samples
below are not intended to be production code, but instead simple
proofs of concept. The next chapter covers building a pipeline for
processing events. Code for the samples is available on Github1.

1https://github.com/bgweber/StartupDataScience/

https://github.com/bgweber/StartupDataScience/


2.4. SENDING TRACKING EVENTS 15

2.4.1 Web Call

The easiest way to set up a tracking service is by making web calls
with the event data to a web site. This can be implemented with
a lightweight PHP script, which is shown in the code block below.

<?php
$message = $_GET['message'];
if ($message != '') {

$dataFile = fopen("telemetry.log", "a");
fwrite($dataFile, "$message\n");
fflush($dataFile);
fclose($dataFile);

}
?>

This php script reads the message parameter from the URL and
appends the message to a local file. The script can be invoked by
making a web call:

http://.../tracking.php?message=Hello_World

The call can be made from client or server using the following code:

// endpoint
String endPoint = "http://.../tracking.php";

// send the message
String message = "Hello_World";
URL url = new URL(endPoint + "?message=" + message);
URLConnection con = url.openConnection();
BufferedReader in = new BufferedReader(new

InputStreamReader(con.getInputStream()));

// process the response
while (in.readLine() != null) {}
in.close();

This is one of the easiest ways to start collecting tracking data,
but it doesn’t scale and it’s not secure. It’s useful for testing, but



16 CHAPTER 2. TRACKING DATA

should be avoided for anything customer facing. I did use this
approach in the past to collect data about players for a Mario level
generator experiment2.

2.4.2 Web Server

Another approach you can use is setting up a web service to collect
tracking events. The code below shows how to use Jetty to set up a
lightweight service for collecting data. In order to compile and run
the example, you’ll need to include the project pom file. The first
step is to start a web service that will handle tracking requests:

public class TrackingServer extends AbstractHandler {
public static void main(String[] args) {

Server server = new Server(8080);
server.setHandler(new TrackingServer());
server.start();
server.join();

}

public void handle(String target,
Request baseRequest, HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

// Process Request
}

}

In order to process events, the application reads the message pa-
rameter from the web request, appends the message to a local file,
and then responds to the web request.

// append the event data to a local file
String message = baseRequest.getParameter("message");
if (message != null) {

BufferedWriter writer = new BufferedWriter(
new FileWriter("tracking.log", true));

2http://www.gamasutra.com/blogs/BenWeber/20131228/207819/

http://www.gamasutra.com/blogs/BenWeber/20131228/207819/


2.4. SENDING TRACKING EVENTS 17

writer.write(message + "\n");
writer.close();

}

// service the web request
response.setStatus(HttpServletResponse.SC_OK);

In order to call the endpoint with Java, we’ll need to modify the
URL:

URL url = new URL(
"http://localhost:8080/?message=" + message);

This approach can scale a bit more than the PHP approach, but is
still insecure and not the best approach for building a production
system. My advice for building a production ready tracking service
is to use a stream processing system such as Kafka, Amazon Kinesis,
or Google’s PubSub.

2.4.3 Subscription Service

Using messaging services such as PubSub enables systems to col-
lect massive amounts of tracking data, and forward the data to a
number of different consumers. Some systems such as Kafka re-
quire setting up and maintaining servers, while other approaches
like PubSub are managed services that are serverless. Managed
services are great for startups, because they reduce the amount of
DevOps support needed. But the tradeoff is cost, and it’s pricer to
use managed services for massive data collection.

The code below shows how to use Java to post a message to a topic
on PubSub. In order to run this example, you’ll need to set up
a free google cloud project, and enable PubSub. More details on
setting up GCP and PubSub are available online3.

// Set up a publisher
TopicName topicName =

TopicName.of("projectID", "raw-events");

3https://medium.com/p/4087b66952a1

https://medium.com/p/4087b66952a1


18 CHAPTER 2. TRACKING DATA

Publisher publisher = Publisher
.newBuilder(topicName).build();

//schedule a message to be published
String message = "Hello World!";
PubsubMessage msg = PubsubMessage

.newBuilder().setData(ByteString

.copyFromUtf8(message)).build();

// publish the message, add a callback listener
ApiFuture<String> future = publisher.publish(msg);
ApiFutures.addCallback(future,

new ApiFutureCallback<String>() {

public void onFailure(Throwable arg0) {}
public void onSuccess(String arg0) {}

});

publisher.shutdown();

This code example shows how to send a single message to PubSub
for recording a tracking event. For a production system, you’ll
want to implement the onFailure method in order to deal with
failed deliveries. The code above shows how to send a message with
Java, while other languages are supported including Go, Python,
C#, and PHP. It’s also possible to interface with other stream
processing systems such as Kafka.

The next code segment shows how to read a message from PubSub
and append the message to a local file. In the next chapter I’ll
show how to consume messages using DataFlow.

// set up a message handler
MessageReceiver receiver = new MessageReceiver() {

public void receiveMessage(PubsubMessage message,
AckReplyConsumer consumer) {
try {

BufferedWriter writer = new BufferedWriter(new
FileWriter("tracking.log", true));

writer.write(
message.getData().toStringUtf8() + "\n");



2.5. MESSAGE ENCODING 19

writer.close();
consumer.ack();

}
catch (Exception e) {}

}};

// start the listener for 1 minute
SubscriptionName subscriptionName =

SubscriptionName.of("projectId", "raw-events");
Subscriber subscriber = Subscriber.newBuilder(

subscriptionName, receiver).build();

subscriber.startAsync();
Thread.sleep(60000);
subscriber.stopAsync();

We now have a way of getting data from client applications and
backend services to a central location for analysis. The last ap-
proach shown is a scalable and secure method for collecting track-
ing data, and is a managed service making it a good fit for startups
with small data teams.

2.5 Message Encoding

One of the decisions to make when sending data to an endpoint
for collection is how to encode the messages being sent, since all
events that are sent from an application to an endpoint need to be
serialized. When sending data over the internet, it’s good to avoid
language specific encodings, such as Java serialization, because the
application and backend services are likely implemented in different
languages. There’s also versioning issues that can arise when using
a language-specific serialization approach.

Some common ways of encoding tracking events are using the JSON
format and Google’s protocol buffers. JSON has the benefit of be-
ing human readable and supported by a wide variety of languages,
while buffers provide better compression and may better suited
for certain data structures. One of the benefits of using these ap-
proaches is that a schema does not need to be defined before you
can send events, since metadata about the event is included in the



20 CHAPTER 2. TRACKING DATA

message. You can add new attributes as needed, and even change
data types, but this may impact downstream event processing.

When getting started with building a data pipeline, I’d recom-
mended using JSON to get started, since it’s human readable and
supported by a wide variety of languages. It’s also good to avoid
encodings such as pipe-delimited formats, because you many need
to support more complex data structures, such as lists or maps,
when you update your tracking events. Here’s an example of what
a message might look like:

# JSON
{"Type":"Session","Version":1.0,"UserID":"12345"

,"Platform":"iOS"}

# Pipe delimited
Session|1.0|12345|iOS

What about XML? No!

2.6 Building a Tracking API

To build a production system, you’ll need to add a bit more sophis-
tication to your tracking code. A production system should handle
the following issues:

• Delivery Failures: if a message delivery fails, the system
should retry sending the message, and have a backoff mecha-
nism.

• Queueing: if the endpoint is not available, such as a phone
without a signal, the trackling library should be able to store
events for later transmission, such as when wifi is available.

• Batching: instead of sending a large number of small re-
quests, it’s often useful to send batches of tracking events.

• Prioritization: some messages are more important to track
than others, such as preferring monetization events over click
events. A tracking library should be able to prioritize more
critical events.

It’s also useful to have a process in place for disabling tracking
events. I’ve seen data pipelines explode from client applications



2.7. PRIVACY 21

sending way too much data, and there was no way of disabling the
clients from sending the problematic event without turning off all
tracking.

Ideally, a production level system should have some sort of auditing
in place, in order to validate that the endpoints are receiving all of
the data being sent. One approach is to send data to a different
endpoint built on a different infrastructure and tracking library,
but that much redundancy is usually overkill. A more lightweight
approach is to add a sequential counting attribute to all events, so
if a client sends 100 messages, the backend can use this attribute to
know how many events the client attempted to send and validate
the result.

2.7 Privacy

There’s privacy concerns to consider when storing user data. When
data is being made available to analytics and data science teams, all
personally identifiable information (PII) should be stripped from
events, which can include names, addresses, and phone numbers.
In some instances, user names, such as a player’s gamertag on
Steam, may be considered PII as well. It’s also good to strip IP
addresses from any data being collected, to limit privacy concerns.
The general recommendation is to collect as much behavioral data
as needed to answer questions about product usage, while avoiding
the need to collect sensitive information, such as gender and age.
If you’re building a product based on sensitive information, you
should have strong user access controls in place to limit access to
sensitive data. Policies such GDPR are setting new regulations
for collecting and processing data, and GDPR should be reviewed
before shipping a product with tracking.

2.8 Conclusion

Tracking data enables teams to answer a variety of questions about
product usage, enables teams to track the performance and health
of products, and can be used to build data products. This chapter
discussed some of the issues involved in collecting data about user
behavior, and provided examples for how to send data from a client



22 CHAPTER 2. TRACKING DATA

application to an endpoint for later analysis. Here are the key
takeaways to from this chapter:

• Use server-side tracking if possible. It helps avoid a wide
variety of issues.

• QA/test your tracking events. If you’re sending bad data,
you may be drawing incorrect conclusions from your data.

• Have a versioning system in place. You’ll need to add new
events and modify existing events, and this should be a simple
process.

• Use JSON for sending events. It’s human readable, extensi-
ble, and supported by a wide variety of languages

• Use managed services for collecting data. You won’t need to
spin up servers and can collect huge amounts of data.

As you ship more products and scale up your user base, you may
need to change to a different data collection platform, but this
advice is a good starting point for shipping products with tracking.



Chapter 3

Data Pipelines

Building data pipelines is a core component of data science at a
startup. In order to build data products, you need to be able to
collect data points from millions of users and process the results in
near real-time. While the previous chapter discussed what type of
data to collect and how to send data to an endpoint, this chapter
will discuss how to process data that has been collected, enabling
data scientists to work with the data. The chapter on model pro-
duction will discuss how to deploy models on this data platform.

Typically, the destination for a data pipeline is a data lake, such
as Hadoop or parquet files on S3, or a relational database, such as
Redshift. A data pipeline should have the following properties:

• Low Event Latency: Data scientists should be able to
query recent event data in the pipeline, within minutes or
seconds of the event being sent to the data collection end-
point. This is useful for testing purposes and for building
data products that need to update in near real-time.

• Scalability: A data pipeline should be able to scale to bil-
lions of data points, and potentially trillions as a product
scales. A high performing system should not only be able to
store this data, but make the complete data set available for
querying.

• Interactive Querying: A high functioning data pipeline
should support both long-running batch queries and smaller
interactive queries that enable data scientists to explore ta-
bles and understand the schema without having to wait min-

23



24 CHAPTER 3. DATA PIPELINES

utes or hours when sampling data.
• Versioning: You should be able to make changes to your

data pipeline and event definitions without bringing down the
pipeline and suffering data loss. This chapter will discuss how
to build a pipeline that supports different event definitions,
in the case of changing an event schema.

• Monitoring: If an event is no longer being received, or track-
ing data is no longer being received for a particular region,
then the data pipeline should generate alerts through tools
such as PagerDuty.

• Testing: You should be able to test your data pipeline with
test events that do not end up in your data lake or database,
but that do test components in the pipeline.

There’s a number of other useful properties that a data pipeline
should have, but this is a good starting point for a startup. As you
start to build additional components that depend on your data
pipeline, you’ll want to set up tooling for fault tolerance and au-
tomating tasks.

This chapter will show how to set up a scalable data pipeline that
sends tracking data to a data lake, database, and subscription ser-
vice for use in data products. I’ll discuss the different types of data
in a pipeline, the evolution of data pipelines, and walk through an
example pipeline implemented on GCP.

Before deploying a data pipeline, you’ll want to answer the follow-
ing questions, which resemble our questions about tracking specs:

• Who owns the data pipeline?
• Which teams will be consuming data?
• Who will QA the pipeline?

In a small organization, a data scientist may be responsible for the
pipeline, while larger organizations usually have an infrastructure
team that is responsible for keeping the pipeline operational. It’s
also useful to know which teams will be consuming the data, so
that you can stream data to the appropriate teams. For example,
marketing may need real-time data of landing page visits to per-
form attribution for marketing campaigns. And finally, the data
quality of events passed to the pipeline should be thoroughly in-
spected on a regular basis. Sometimes a product update will cause
a tracking event to drop relevant data, and a process should be set
up to capture these types of changes in data.



3.1. TYPES OF DATA 25

3.1 Types of Data

Data in a pipeline is often referred to by different names based
on the amount of modification that has been performed. Data is
typically classified with the following labels:

• Raw: Is tracking data with no processing applied. This is
data stored in the message encoding format used to send
tracking events, such as JSON. Raw data does not yet have
a schema applied. It’s common to send all tracking events as
raw events, because all events can be sent to a single endpoint
and schemas can be applied later on in the pipeline.

• Processed: Processed data is raw data that has been de-
coded into event specific formats, with a schema applied. For
example, JSON tracking events that have been translated
into session start events with a fixed schema are considered
processed data. Processed events are usually stored in differ-
ent event tables/destinations in a data pipeline.

• Cooked: Processed data that has been aggregated or sum-
marized is referred to as cooked data. For example, processed
data could include session start and session end events, and
be used as input to cooked data that summarizes daily activ-
ity for a user, such as number of sessions and total time on
site for a web page.

Data scientists will typically work with processed data, and use
tools to create cooked data for other teams. This chapter discusses
how to build a data pipeline that outputs processed data, while the
Business Intelligence chapter will discuss how to add cooked data
to your pipeline.

3.2 The Evolution of Data Pipelines

Over the past two decades the landscape for collecting and ana-
lyzing data has changed significantly. Rather than storing data
locally via log files, modern systems can track activity and apply
machine learning in near real-time. Startups might want to use one
of the earlier approaches for initial testing, but should really look
to more recent approaches for building data pipelines. Based on
my experience, I’ve noticed four different approaches to pipelines:



26 CHAPTER 3. DATA PIPELINES

Figure 3.1: Components in a pre-database Analytics Architecture.

• Flat File Era: Data is saved locally on game servers.
• Database Era: Data is staged in flat files and then loaded

into a database.
• Data Lake Era: Data is stored in Hadoop/S3 and then

loaded into a DB.
• Serverless Era: Managed services are used for storage and

querying.

Each of the steps in this evolution support the collection of larger
data sets, but may introduce additional operational complexity.
For a startup, the goal is to be able to scale data collection with-
out scaling operational resources, and the progression to managed
services provides a nice solution for growth.

The data pipeline that we’ll walk through in the next section of
this chapter is based on the most recent era of data pipelines, but
it’s useful to walk through different approaches because the re-
quirements for different companies may fit better with different
architectures.

3.2.1 Flat File Era

I got started in data science at Electronic Arts in 2010, before
EA had an organization built around data. While many game
companies were already collecting massive amounts of data about
gameplay, most telemetry was stored in the form of log files or
other flat file formats that were stored locally on the game servers.
Nothing could be queried directly, and calculating basic metrics
such as monthly active users (MAU) took substantial effort.

At Electronic Arts, a replay feature was built into Madden NFL
11 which provided an unexpected source of game telemetry. After



3.2. THE EVOLUTION OF DATA PIPELINES 27

every game, a game summary in an XML format was sent to a
game server that listed each play called, moves taken during the
play, and the result of the down. This resulted in millions of files
that could be analyzed to learn more about how players interacted
with Madden football in the wild.

Storing data locally is by far the easiest approach to take when col-
lecting gameplay data. For example, the PHP approach presented
in the last chapter is useful for setting up a lightweight analytics
endpoint. But this approach does have significant drawbacks.

This approach is simple and enables teams to save data in whatever
format is needed, but has no fault tolerance, does not store data
in a central location, has significant latency in data availability,
and has no standard tooling for building an ecosystem for analysis.
Flat files can work fine if you only have a few servers, but it’s not
really an analytics pipeline unless you move the files to a central
location. You can write scripts to pull data from log servers to a
central location, but it’s not generally a scalable approach.

3.2.2 Database Era

While I was at Sony Online Entertainment, we had game servers
save event files to a central file server every couple of minutes. The
file server then ran an ETL process about once an hour that fast
loaded these event files into our analytics database, which was Ver-
tica at the time. This process had a reasonable latency, about
one hour from a game client sending an event to the data being
queryable in our analytics database. It also scaled to a large vol-
ume of data, but required using a fixed schema for event data.

When I was a Twitch, we used a similar process for one of our
analytics databases. The main difference from the approach at
SOE was that instead of having game servers scp files to a central
location, we used Amazon Kinesis to stream events from servers to
a staging area on S3. We then used an ETL process to fast load
data into Redshift for analysis. Since then, Twitch has shifted to
a data lake approach, in order to scale to a larger volume of data
and to provide more options for querying the datasets.

The databases used at SOE and Twitch were immensely valuable
for both of the companies, but we did run into challenges as we
scaled the amount of data stored. As we collected more detailed



28 CHAPTER 3. DATA PIPELINES

Figure 3.2: Components in an ETL-based Analytics Architecture.

information about gameplay, we could no longer keep complete
event history in our tables and needed to truncate data older than
a few months. This is fine if you can set up summary tables that
maintain the most important details about these events, but it’s
not an ideal situation.

One of the issues with this approach is that the staging server be-
comes a central point of failure. It’s also possible for bottlenecks to
arise where one game sends way too many events, causing events
to be dropped across all of the titles. Another issue is query per-
formance as you scale up the number of analysts working with the
database. A team of a few analysts working with a few months of
gameplay data may work fine, but after collecting years of data and
growing the number of analysts, query performance can be a sig-
nificant problem, causing some queries to take hours to complete.

The main benefits of this approach are that all event data is avail-
able in a single location queryable with SQL and great tooling is
available, such as Tableau and DataGrip, for working with rela-
tional databases. The drawbacks are that it’s expensive to keep all
data loaded into a database like Vertica or Redshift, events needs
to have a fixed schema, and truncating tables may be necessary.



3.2. THE EVOLUTION OF DATA PIPELINES 29

Figure 3.3: Components in a Data Lake Analytics Architecture.

Another issue with using a database as the main interface for data
is that machine learning tools such as Spark’s MLlib cannot be
used effectively, since the relevant data needs to be unloaded from
the database before it can be operated on. One of the ways of
overcoming this limitation is to store gameplay data in a format and
storage layer that works well with Big Data tools, such as saving
events as Parquet files on S3. This type of configuration became
more population in the next era, and gets around the limitations
of needing to truncate tables and the reduces the cost of keeping
all data.

3.2.3 Data Lake Era

The data storage pattern that was most common while I was work-
ing as a data scientist in the games industry was a data lake. The
general pattern is to store semi-structured data in a distributed
database, and run ETL processes to extract the most relevant data
to analytics databases. A number of different tools can be used for
the distributed database: at Electronic Arts we used Hadoop, at
Microsoft Studios we used Cosmos, and at Twitch we used S3.

This approach enables teams to scale to massive volumes of data,
and provides additional fault tolerance. The main downside is that
it introduces additional complexity, and can result in analysts hav-
ing access to less data than if a traditional database approach was



30 CHAPTER 3. DATA PIPELINES

used, due to lack of tooling or access policies. Most analysts will in-
teract with data in the same way in this model, using an analytics
database populated from data lake ETLs.

One of the benefits of this approach is that it supports a variety of
different event schemas, and you can change the attributes of an
event without impacting the analytics database. Another advan-
tage is that analytics teams can use tools such as Spark SQL to
work with the data lake directly. However, most places I worked at
restricted access to the data lake, eliminating many of the benefits
of this model.

This approach scales to a massive amount of data, supports flexi-
ble event schemas, and provides a good solution for long-running
batch queries. The down sides are that it may involve significant
operational overhead, may introduce large event latencies, and may
lack mature tooling for the end users of the data lake. An addi-
tional drawback with this approach is that usually a whole team
is needed just to keep the system operational. This makes sense
for large organizations, but may be overkill for smaller companies.
One of the ways of taking advantage of using a data lake without
the cost of operational overhead is by using managed services.

3.2.4 Serverless Era

In the current era, analytics platforms incorporate a number of
managed services, which enable teams to work with data in near
real-time, scale up systems as necessary, and reduce the overhead
of maintaining servers. I never experienced this era while I was
working in the game industry, but saw signs of this transition hap-
pening. Riot Games is using Spark1 for ETL processes and machine
learning, and needed to spin up infrastructure on demand. Some
game teams are using elastic computing methods for game services,
and it makes sense to utilize this approach for analytics as well.

This approach has many of the same benefits as using a data lake,
autoscales based on query and storage needs, and has minimal oper-
ational overhead. The main drawbacks are that managed services
can be expensive, and taking this approach will likely result in
using platform specific tools that are not portable to other cloud
providers.

1https://databricks.com/customers/riot-games

https://databricks.com/customers/riot-games


3.3. A SCALABLE PIPELINE 31

Figure 3.4: Components in a managed Analytics Architecture.

In my career I had the most success working with the database
era approach, since it provided the analytics team with access to
all of the relevant data. However, it wasn’t a setup that would
continue to scale and most teams that I worked on have since moved
to data lake environments. In order for a data lake environment
to be successful, analytics teams need access to the underlying
data, and mature tooling to support their processes. For a startup,
the serverless approach is usually the best way to start building a
data pipeline, because it can scale to match demand and requires
minimal staff to maintain the data pipeline. The next section will
walk through building a sample pipeline with managed services.

3.3 A Scalable Pipeline

We’ll build a data pipeline that receives events using Google’s
PuSub as an endpoint, and save the events to a data lake and
database. The approach presented here will save the events as
raw data, but I’ll also discuss ways of transforming the events into
processed data.

The data pipeline that performs all of this functionality is rela-
tively simple. The pipeline reads messages from PubSub and then
transforms the events for persistence: the BigQuery portion of the
pipeline converts messages to TableRow objects and streams di-
rectly to BigQuery, while the AVRO portion of the pipeline batches



32 CHAPTER 3. DATA PIPELINES

Figure 3.5: The streaming pipeline deployed to GCP.

events into discrete windows and then saves the events to Google
Storage. The graph of operations is shown in the figure above.

3.3.1 Setting up the Environment

The first step in building a data pipeline is setting up the depen-
dencies necessary to compile and deploy the project. I used the fol-
lowing maven dependencies to set up environments for the tracking
API that sends events to the pipeline, and the data pipeline that
processes events.

<!-- Dependencies for the Tracking API ->
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-pubsub</artifactId>
<version>0.32.0-beta</version>
</dependency>

</dependencies>



3.3. A SCALABLE PIPELINE 33

Figure 3.6: Sending events from a server to a PubSub topic.

<!-- Dependencies for the data pipeline ->
<dependency>
<groupId>com.google.cloud.dataflow</groupId>
<artifactId>google-cloud-dataflow-java-sdk-all

</artifactId>
<version>2.2.0</version>

</dependency>

I used Eclipse to author and compile the code for this tutorial, since
it is open source. However, other IDEs such as IntelliJ provide
additional features for deploying and monitoring DataFlow tasks.
Before you can deploy jobs to Google Cloud, you’ll need to set up a
service account for both PubSub and DataFlow. Setting up these
credentials is outside the scope of this book, and more details are
available in the Google documentation2.

An additional prerequisite for running this data pipeline is setting
up a PubSub topic on GCP. I defined a raw-events topic that is
used for publishing and consuming messages for the data pipeline.
Additional details on creating a PubSub topic are available online3.

To deploy this data pipeline, you’ll need to set up a java environ-
ment with the maven dependencies listed above, set up a Google
Cloud project and enable billing, enable billing on the storage and
BigQuery services, and create a PubSub topic for sending and re-
ceiving messages. All of these managed services do cost money, but
there is a free tier that can be used for prototyping a data pipeline.

2https://cloud.google.com/bigquery/docs/authentication
3https://cloud.google.com/pubsub/docs/quickstart-console

https://cloud.google.com/bigquery/docs/authentication
https://cloud.google.com/pubsub/docs/quickstart-console


34 CHAPTER 3. DATA PIPELINES

3.3.2 Publishing Events

In order to build a usable data pipeline, it’s useful to build APIs
that encapsulate the details of sending event data. The Tracking
API class provides this functionality, and can be used to send gen-
erated event data to the data pipeline. The code below shows the
method signature for sending events, and shows how to generate
sample data.

// send a batch of events
for (int i=0; i<10000; i++) {

// generate event names
String type = Math.random() < 0.5 ? "Session"
(Math.random() < 0.5 ? "Login" : "MatchStart");

// create attributes to send
HashMap attributes = new HashMap();
attributes.put("userID", (int)(Math.random()*100));
attributes.put("deviceType", Math.random() < 0.5 ?

"Android" : (Math.random() < 0.5 ? "iOS" : "Web"));

// send the event
tracking.sendEvent(type, "V1", attributes);

}

The tracking API establishes a connection to a PubSub topic,
passes events as a JSON format, and implements a callback for
notification of delivery failures. The code used to send events is
provided below, and is based on Google’s PubSub example.

// Setup a PubSub connection
TopicName topicName = TopicName.of(projectID, topicID);
Publisher publisher = Publisher

.newBuilder(topicName).build();

// Specify an event to send
String event =

{\"type\":\"session\",\"version\":\"1\"}";



3.3. A SCALABLE PIPELINE 35

Figure 3.7: Streaming event data from PubSub to DataFlow.

// Convert the event to bytes
ByteString data = ByteString

.copyFromUtf8(event.toString());

//schedule a message to be published
PubsubMessage msg =
PubsubMessage.newBuilder().setData(data).build();

// publish the message
ApiFuture<String> future = publisher.publish(msg);
ApiFutures.addCallback(future, this);

The code above enables apps to send events to a PubSub topic. The
next step is to process this events in a fully-managed environment
that can scale as necessary to meet demand.

3.3.3 Storing Events

One of the key functions of a data pipeline is to make instrumented
events available to data science and analytics teams for analysis.
The data sources used as endpoints should have low latency and be
able to scale up to a massive volume of events. The data pipeline
defined in this tutorial shows how to output events to both Big-
Query and a data lake that can be used to support a large number
of analytics business users.

The first step in this data pipeline is reading events from a Pub-
Sub topic and passing ingested messages to the DataFlow process.
DataFlow provides a PubSub connector that enables streaming of
PubSub messages to other DataFlow components. The code be-
low shows how to instantiate the data pipeline, specify streaming



36 CHAPTER 3. DATA PIPELINES

Figure 3.8: Batching events to AVRO format and saving to GS.

mode, and to consume messages from a specific PubSub topic. The
output of this process is a collection of PubSub messages that can
be stored for later analysis.

// set up pipeline options
Options options = PipelineOptionsFactory.fromArgs(args)
.withValidation().as(Options.class);

options.setStreaming(true);
Pipeline pipeline = Pipeline.create(options);

// read game events from PubSub
PCollection<PubsubMessage> events = pipeline
.apply(PubsubIO.readMessages().fromTopic(topic));

The first way we want to store events is in a columnar format that
can be used to build a data lake. While this chapter doesn’t show
how to utilize these files in downstream ETLs, having a data lake
is a great way to maintain a copy of your data set in case you need
to make changes to your database. The data lake provides a way
to backload your data if necessary due to changes in schemas or
data ingestion issues. The portion of the data pipeline allocated to
this process is shown below.

For AVRO, we can’t use a direct streaming approach. We need
to group events into batches before we can save to flat files. The
way this can be accomplished in DataFlow is by applying a win-
dowing function that groups events into fixed batches. The code
below applies transformations that convert the PubSub messages
into String objects, group the messages into 5 minute intervals, and



3.3. A SCALABLE PIPELINE 37

output the resulting batches to AVRO files on Google Storage. To
summarize, the code batches events into 5 minute windows and
then exports the events to AVRO files on Google Storage.

// AVRO output portion of the pipeline
events.apply("To String",

ParDo.of(new DoFn<PubsubMessage, String>() {

@ProcessElement
public void processElement(ProcessContext c) {

String msg = new String(c.element().getPayload());
c.output(msg);

}
}))

// Batch events into 5 minute windows
.apply("Batch Events", Window.<String>into(

FixedWindows.of(Duration.standardMinutes(5)))
.triggering(AfterWatermark.pastEndOfWindow())
.discardingFiredPanes()
.withAllowedLateness(Duration.standardMinutes(5)))

// Save the events in ARVO format
.apply("To AVRO", AvroIO.write(String.class)
.to("gs://your_gs_bucket/avro/raw-events.avro")
.withWindowedWrites()
.withSuffix(".avro"));

The result of this portion of the data pipeline is a collection of
AVRO files on google storage that can be used to build a data lake.
A new AVRO output is generated every 5 minutes, and downstream
ETLs can parse the raw events into processed event-specific table
schemas. The image below shows a sample output of AVRO files.

In addition to creating a data lake, we want the events to be im-
mediately accessible in a query environment. DataFlow provides
a BigQuery connector which serves this functionality, and data
streamed to this endpoint is available for analysis after a short
duration. This portion of the data pipeline is shown below.

The data pipeline converts the PubSub messages into TableRow
objects, which can be directly inserted into BigQuery. The code



38 CHAPTER 3. DATA PIPELINES

Figure 3.9: AVRO files saved to Google Storage.

Figure 3.10: Streaming events from DataFlow to BigQuery.



3.3. A SCALABLE PIPELINE 39

below consists of two apply methods: a data transformation and
a IO writer. The transform step reads the message payloads from
PubSub, parses the message as a JSON object, extracts the event-
Type and eventVersion attributes, and creates a TableRow object
with these attributes in addition to a timestamp and the message
payload. The second apply method tells the pipeline to write the
records to BigQuery and to append the events to an existing table.

// parse the PubSub events and create rows
events.apply("To Table Rows", ParDo.of(new

DoFn<PubsubMessage, TableRow>() {

@ProcessElement
public void processElement(ProcessContext c) {

String msg = new String(c.element().getPayload());

// parse the json message for attributes
JsonObject jsonObject =

new JsonParser().parse(msg).getAsJsonObject();
String type = jsonObject.get("type").getAsString();
String eventVersion = jsonObject.

get("eventVersion").getAsString();
String serverTime = dateFormat.format(new Date());

// create and output the table row
TableRow record = new TableRow();
record.set("eventType", type);
record.set("eventVersion", eventVersion);
record.set("serverTime", serverTime);
record.set("message", message);
c.output(record);

}
}))
//stream the events to Big Query
.apply("To BigQuery",BigQueryIO.writeTableRows()
.to(table)
.withSchema(schema)
.withCreateDisposition(

CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_APPEND))



40 CHAPTER 3. DATA PIPELINES

Figure 3.11: Game event records queried from the raw-events table
in BigQuery.

Each message that is consumed from PubSub is converted into a
TableRow object with a timestamp and then streamed to BigQuery
for storage. The result of this portion of the data pipeline is that
events will be streamed to BigQuery and will be available for anal-
ysis in the output table specified by the DataFlow task. In order
to effectively use these events for queries, you’ll need to build addi-
tional ETLs for creating processed event tables with schematized
records, but you now have a data collection mechanism in place for
storing tracking events.

3.3.4 Deploying and Auto Scaling

With DataFlow you can test the data pipeline locally or deploy to
the cloud. If you run the code samples without specifying addi-
tional attributes, then the data pipeline will execute on your local
machine. In order to deploy to the cloud and take advantage of the
auto scaling capabilities of this data pipeline, you need to specify
a new runner class as part of your runtime arguments. In order to
run the data pipeline, I used the following runtime arguments:

--runner=org.apache.beam.runners.dataflow.DataflowRunner
--jobName=game-analytics
--project=your_project_id
--tempLocation=gs://temp-bucket

Once the job is deployed, you should see a message that the job
has been submitted. You can then click on the DataFlow console



3.3. A SCALABLE PIPELINE 41

Figure 3.12: The steaming data pipeline running on Google Cloud.

Figure 3.13: An example of Dataflow auto scaling.

to see the task. The runtime configuration specified above will not
default to an auto scaling configuration. In order to deploy a job
that scales up based on demand, you’ll need to specify additional
attributes:

--autoscalingAlgorithm=THROUGHPUT_BASED
--maxNumWorkers=30

Additional details on setting up a DataFlow task to scale to heavy
workload conditions are available from Spotify4. The image above
shows how DataFlow can scale up to meet demand as necessary.

3.3.5 Raw to Processed Events

The pipeline presented so far saves tracking events as raw data. To
translate these events to processed data, we’ll need to apply event

4https://labs.spotify.com/2016/03/10/

https://labs.spotify.com/2016/03/10/


42 CHAPTER 3. DATA PIPELINES

specific schemas. There’s a few different approaches we can take
with this pipeline:

• Apply the schemas in the current DataFlow pipeline and save
to BigQuery.

• Apply the schemas in the pipeline and send to a new PubSub.
• Apply additional attributes to the raw events and send to a

new PubSub.
• Use downstream ETLs to apply schemas.

The first approach is the simplest, but it doesn’t provide a good
solution for updating the event definitions if needed. This approach
can be implemented as shown in the code below, which shows how
to filter and parse MatchStart events for entry into BigQuery.

events.apply("To MatchStart Events", ParDo.of(
new DoFn<PubsubMessage, TableRow>() {

@ProcessElement
public void processElement(ProcessContext c) {

String msg = new String(c.element().getPayload());
JsonObject jsonObject = new

JsonParser().parse(msg).getAsJsonObject();
String eventType = jsonObject.get("type");
String version = jsonObject.get("eventVersion");
String serverTime = dateFormat.format(new Date());

// Filter for MatchStart events
if (eventType.equals("MatchStart")) {

TableRow record = new TableRow();
record.set("eventType", eventType);
record.set("eventVersion", version);
record.set("server_time", serverTime);

// event specifc attributes
record.set("userID", jsonObject.get("userID"));
record.set("type", jsonObject.get("deviceType"));
c.output(record);

}
}}))
.apply("To BigQuery",BigQueryIO.writeTableRows()



3.3. A SCALABLE PIPELINE 43

Figure 3.14: The streaming pipeline with an additional output.

In order to implement this approach, you’d need to create a new
DoFn implementation for each type of event. The second approach
is similar to the first, but instead of passing the parsed events to
BigQuery, they are passed to a new PubSub topic. It’s possible to
send multiple types of events to a single topic or create a topic per
event. The drawback of using the first two approaches is that the
message parsing logic is part of the raw event pipeline. This means
that changing event definitions involves restarting the pipeline.

A third approach that can be used is sending raw events with ad-
ditional attributes to another PubSub topic. A second DataFlow
job can then be set up to parse events as needed. The code be-
low shows how to parse raw events, add additional attributes to
the PubSub message for filtering, and publish the events to a sec-
ond topic. This approach enables event definitions to be changed
without restarting the raw event pipeline.

// topic for raw events with additional attributes
private static String processed =

"projects/your_project_id/topics/processed-events";

events.apply("PubSub Processed",



44 CHAPTER 3. DATA PIPELINES

ParDo.of(new DoFn<PubsubMessage, PubsubMessage>() {

@ProcessElement
public void processElement(ProcessContext c) {

String msg = new String(c.element().getPayload());

// parse the JSON message for attributes
JsonObject jsonObject = new

JsonParser().parse(msg).getAsJsonObject();
String eventType = jsonObject.get("eventType");

// Add additional attributes for filtering
HashMap<String, String> atts = new HashMap();
atts.put("EventType", eventType);
PubsubMessage out = new PubsubMessage(

msg.getBytes(), atts);
c.output(out);

}
}))
.apply(PubsubIO.writeMessages().to(processed));

A fourth approach that can be used is having downstream ETLs
processes apply schemas to the raw events and break apart the raw
events table into event specific tables. We’ll cover this approach in
the next chapter.

3.4 Conclusion

This chapter has provided an introduction to building a data
pipeline for a startup. We covered the types of data in a pipeline,
desired properties of a high functioning data pipeline, the evolution
of data pipelines, and a sample pipeline built on GCP. The full
source code for this sample pipeline is available on Github5.

There is now a variety of tools available that make it possible to
set up an analytics pipeline for an application with minimal effort.
Using managed resources enables small teams to take advantage
of serverless and autoscaling infrastructure to scale up to massive
event volumes with minimal infrastructure management. Rather

5https://github.com/bgweber/GameAnalytics

https://github.com/bgweber/GameAnalytics


3.4. CONCLUSION 45

than using a data vendor’s off-the-shelf solution for collecting data,
you can record all relevant data for your app. While the approach
presented here isn’t directly portable to other clouds, the Apache
Beam library used to implement the core functionality of this data
pipeline is portable and similar tools can be leveraged to build
scalable data pipelines on other cloud providers.



46 CHAPTER 3. DATA PIPELINES



Chapter 4

Business Intelligence

A lot of the heavy lifting involved in setting up data science at
a startup is convincing the product team to instrument and care
about data. If you’re able to achieve this goal, the next step is being
able to answer all sorts of questions about product health within
your organization. A novice data scientist might think that this
type of work is outside the role of a data scientist, but identifying
key metrics for product health is one of the core facets of the role.

I’ve titled this chapter as business intelligence, because once you’ve
set up a data pipeline, a data scientist in a startup is expected to
answer every question about data. This is not surprising given
the new flood of data, but also a time for a data scientist to set
expectations for the rest of the organization. As a data scientist
in a startup, your function is not to answer data questions, but to
inform the leadership about what metrics should be important.

This chapter covers the basics of how to turn raw data into cooked
data that can summarize the health of a product. I’ll discuss a few
different approaches to take when working with raw data, including
SQL queries, R markdown, and vendor tools. The general takeaway
is to show that several options are available for processing data sets,
and you should choose a solution that fits the goals of your team.
I’ll discuss past experiences with tools such as Tableau, and provide
recommendations for scaling automated reporting across a team.

We’ll use two data sources for this chapter. The first is a public
data set that we’ll aggregate and summarize with key metrics. The

47



48 CHAPTER 4. BUSINESS INTELLIGENCE

second is data generated by the tracking API in the second chapter
of this series. We’ll focus on the second data set for transforming
raw to processed data, and the first data set for processed to cooked
data.

4.1 KPIs

Key Performance Indicators (KPIs) are used to track the health
of a startup. It’s important to track metrics that capture engage-
ment, retention, and growth, in order to determine if changes made
to the product are beneficial. As the data scientist at a startup,
your role has the responsibility of identifying which metrics are im-
portant.This function aligns with the data science competency of
domain knowledge, and is one of the areas where a data scientist
can be highly influential.

KPIs that are established by an early data scientist can have have
a resounding impact. For example, many of the past companies I
worked at had company goals based on past analyses of data sci-
entists. At Electronic Arts we were focused on improving session
metrics, at Twitch we wanted to maximize the amount of content
watched, and at Sony Online Entertainment we wanted to improve
retention metrics for free-to-play titles. These were game industry
metrics, but there are more general metrics such as engagement,
growth, and monetization that are important to track when build-
ing a company.

It’s important when building a data science discipline at a startup
to make sure that your team is working on high impact work. One
of the problems I’ve seen at past companies is data scientists getting
pulled into data engineering and analytics type of work. This is
expected when there’s only one data person at the company, but
you don’t want to support too many manual data processes that
won’t scale. This is why setting up reproducible approaches for
reporting and analysis is important. It should be trivial to rerun
an analysis months down the road, and it should be possible for
another team member to do so with minimal direction.

My main advice for new data scientists to prevent getting over-
whelmed with requests from product managers and other teams is
to set up an interface to the data science team that buffers direct
requests. Instead of having anyone at the company being able to



4.2. REPORTING WITH R 49

ask the data science team how things are performing, a baseline
set of dashboards should be set up to track product performance.
Given that a data scientist may be one of the first data roles at a
startup, this responsibility will initially lie with the data scientist
and it’s important to be familiar with a number of different tools
in order to support this function at a startup.

4.2 Reporting with R

One of the key transitions that you can make at a startup as a
data scientist is migrating from manual reporting processes to re-
producible reports. R is a powerful programming language for this
type of work, and can be used in a number of different ways to
provide automated reporting capabilities. This section discusses
how to use R for creating plots, generating reports, and building
interactive web applications. While many of these capabilities are
also provided by Python and the Jupyter suite, the focus on au-
tomation is more important than the language used to achieve this
goal.

It’s possible to achieve some of this type of functionality with Excel
or Google Sheets, but I would advise against this approach for a
startup. These tools are great for creating charts for presentations,
but not suitable for automated reporting. It’s not sustainable for a
data scientist to support a startup based on these types of reports,
because so many manual steps may be necessary. Connectors like
ODBC in Excel may seem useful for automation, but likely won’t
work when trying to run reports on another machine.

This section covers three approaches to building reports with R:
using R directly to create plots, using R Markdown to generate
reports, and using Shiny to create interactive visualizations. All of
the code listed in this section is available on Github1.

4.2.1 Base R

Consider a scenario where you are part of a NYC startup in the
transportation sector, and you want to determine what type of

1https://github.com/bgweber/StartupDataScience/tree/master/
BusinessIntelligence

https://github.com/bgweber/StartupDataScience/tree/master/BusinessIntelligence
https://github.com/bgweber/StartupDataScience/tree/master/BusinessIntelligence


50 CHAPTER 4. BUSINESS INTELLIGENCE

payment system to use to maximize the potential of growing your
user base. Luckily, there’s a public data set that can help with
answering this type of question: BigQuery’s NYC Taxi and Limou-
sine Trips public data set2. This collection of trip data includes
information on payments that you can use to trend the usage of
payment types over time.

The first approach we’ll use to answer this question is using a plot-
ting library in R to create a plot. I recommend using the RStudio
IDE when taking this approach. Also, this approach is not actually
“Base R”, because I am using two additional libraries to accomplish
the goal of summarizing this data set and plotting the results. I’m
referring to this section as Base R, because I am using the built-in
visualization capabilities of R.

One of the great aspects of R is that there’s a variety of different
libraries available for working with different types of databases.
The bigrquery library provides a useful connector to BigQuery that
can be used to pull data from the public data set within an R
script. The code for summarizing the payment history over time
and plotting the results as a chart is shown below.

library(bigrquery)
library(plotly)
project <- "your_project_id"
sql <- "SELECT

substr(cast(pickup_datetime as String), 1, 7) as date
,payment_type as type
,sum(total_amount) as amount

FROM `nyc-tlc.yellow.trips`
group by 1, 2"
df <- query_exec(sql, project = project,

use_legacy_sql = FALSE)
plot_ly(df, x = ~date, y = ~amount,

color = ~type) %>% add_lines()

The first part of this script, which includes everything except for the
last line, is responsible for pulling the data from BigQuery. It loads
the necessary libraries, states a query to run, and uses bigrquery
to fetch the result set. Once the data has been pulled into a data
frame, the second part of the script uses the plotly library to display

2https://cloud.google.com/bigquery/public-data/nyc-tlc-trips

https://cloud.google.com/bigquery/public-data/nyc-tlc-trips


4.2. REPORTING WITH R 51

Figure 4.1: Monthly Spending by Payment Type.

the results as a line chart. Some additional formatting steps have
been excluded from the script, and the full code listing is available
on Github. In RStudio, the chart will show up as an interactive
plot in the IDE, and Jupyter provides similar functionality. The
result of this code snippet is shown in the chart above.

The query calculates the total monthly spend by payment type for
taxi trips in NYC, using data from 2009 to 2015. The results show
that credit cards (CRD) are now the preferred payment method
over cash (CSH). To answer the initial question about what type
of payment system to implement, I’d recommend starting with a
system that accepts credit cards.

One topic worth bringing up at this point is data quality, since the
chart has a number of different labels that seem to represent the
same values. For example CAS and CSH both likely refer to cash
payments and should be grouped together to get an accurate total
of cash payments. Dealing with these types of issues is outside the
scope of this book, but there are a few methods that can be used
for this type of scenario. The easiest but least scalable approach is
to write queries that account for these different types:



52 CHAPTER 4. BUSINESS INTELLIGENCE

,sum(case when payment_type in ('CSH', 'CAS')
then amount else 0 end) as cash_payments

A different approach that can be used is creating a dimension table
that maps all of the raw payment_type values to sanitized type
values. This process is often called attribute enrichment, and is
useful when building out cooked data sets from raw or processed
data.

We’ve answered the first question about determining the most pop-
ular payment method, but what if we have a second question about
whether or not the transportation market in NYC is growing? We
can easily plot data to answer this question using the existing data:

total <- aggregate(df$Amount,
by=list(Category=df$Date), FUN=sum)

plot_ly(total, x = ~Category, y = ~x) %>% add_lines()

This code computes the total monthly payments across all of the
different payment types, and plots the aggregate value as a single
line chart. The results are shown in the figure below. Based on the
initial observation of this data, the answer to the second question
is unclear. There’s been a steady increase in taxi spending in NYC
from 2009 to 2013, with seasonal fluctuations, but spending peaked
in summer of 2014. It’s possible that Uber and Lyft account for
this trend, but further analysis is needed to draw a firm conclusion.

This section has shown how to use R to generate plots from sum-
marized data in BigQuery. While this sample used a fixed data set,
the same approach could be used with a live data set that grows
over time, and rerunning the script will include more recent data.
This is not yet automated reporting, because it involves manually
running the code in an IDE or notebook. One approach that could
be used is outputting the plot to an image file, and running the
script as part of a cron job. The result of this approach is an
image of the plot that gets updated on a regular schedule. This
is a good starting point, but there are more elegant solutions for
automated reporting in R.



4.2. REPORTING WITH R 53

Figure 4.2: Total Monthly Spending.

4.2.2 R Markdown

Let’s say you want to perform the same analysis as before, but
want to produce a report each time you run the script. R Mark-
down provides this capability, and can use R code to generate
PDFs, word documents (DOCX), and web pages (HTML). You
can even write books with R Markdown! R Markdown extends
standard markdown to support inline R snippets that can be used
to generate visualizations. The embedded R code can perform al-
most any standard R functionality, including using R libraries and
making connections to databases. This means we can convert the
code above into an R markdown file, and run the script regularly
to build automated reporting.

The markdown snippet below is the previous R code now embedded
in a report that will generate an HTML file as output. The first
part of the file is metadata about the report, including the desired
output. Next, markdown is used to add commentary to the report.
And finally, a R code block is used to pull data from BigQuery and
plot the results. The resulting plotly object is embedded into the
document when running this report.



54 CHAPTER 4. BUSINESS INTELLIGENCE

---
title: "Business Intelligence"
output: html_document
---
## Taxi Payments
R Markdown can outputs reports as PDF or HTML.

`` `{r echo=FALSE, message=FALSE, warning=FALSE}
library(bigrquery)
library(plotly)
project <- "your_project_id"
sql <- "SELECT

substr(cast(pickup_datetime as String), 1, 7) as date
,payment_type as type
,sum(total_amount) as amount

FROM `nyc-tlc.yellow.trips`
group by 1, 2"
df <- query_exec(sql, project = project,

use_legacy_sql = FALSE)
plot_ly(df, x = ~date, y = ~amount,

color = ~type) %>% add_lines()
` ``

The resulting HTML document is shown in the figure below. It
includes that same plot as before, as well as the markdown text
listed before the code block. This output can be more useful than
an image, because the plotly charts embedded in the file are inter-
active, rather than rendered images. It’s also useful for creating
reports with a variety of different charts and metrics.

To automate creating this report, you can again set up a cron job.
The command for converting the Rmd file to a report is:

Rscript -e "rmarkdown::render('BI.Rmd')"

We now have a way of generating reports, and can use cron to start
building an automated reporting solution. However, we don’t yet
have charts that provide filtering and drill-down functionality.



4.2. REPORTING WITH R 55

Figure 4.3: The report generated from the R Markdown file.



56 CHAPTER 4. BUSINESS INTELLIGENCE

4.2.3 R Shiny

Shiny is a solution for building dashboards directly in R. It provides
functionality for building reports with filtering and drill-down capa-
bilities, and can be used as an alternative to tools such as Tableau.
When using Shiny, you specify the UI components to include in
the report and the behaviors for different components in a report,
such as applying a filter based on changes to a slider component.
The result is an interactive web app that can run your embedded
R code.

I’ve created a sample Shiny application based on the same code as
the above reports. The first part of the code is the same, we pull
data from BigQuery to a dataframe, but we also include the shiny
library. The second part of the code defines the behavior of differ-
ent components (server), and the layout of different components
(ui). These functions are passed to the shinyApp call to launch the
dashboard.

library(shiny)
library(bigrquery)
library(plotly)
project <- "your_project_id"
sql <- "SELECT
substr(cast(pickup_datetime as String), 1, 7) as date
,payment_type as type
,sum(total_amount) as amount
FROM `nyc-tlc.yellow.trips`
group by 1, 2"
df <- query_exec(sql, project = project,

use_legacy_sql = FALSE)
server <- function(input, output) {

output$plot <- renderPlotly({
plot_ly(df[df$date >= input$year, ], x = ~date,

y = ~amount, color = ~type) %>% add_lines()
})

}
ui <- shinyUI(fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput("year", "Start Year:",



4.2. REPORTING WITH R 57

Figure 4.4: An interactive Chart in R Shiny.

min = 2009, max = 2015, value = 2012)
),
mainPanel(plotlyOutput("plot"))

)
))
shinyApp(ui = ui, server = server)

The UI function specifies how to lay out the components in the
dashboard. I started with the Hello Shiny example, which includes
a slider and histogram, and modified the layout to use a plotlyOut-
put object instead of a plotOutput. The slider specifies the years to
allow for selection, and sets a default value. The behavior function
specifies how to respond to changes in UI components. The plot is
the same as behavior, with one modification, it now filters on the
starting data when using the data frame df$date >= input$year.
The result is the interactive dashboard shown above. Moving the
slider will now filter the years that are included in the chart.

I’ve now shown three different ways to generate reports using R.
If you need interactive dashboards, then Shiny is a great tool to



58 CHAPTER 4. BUSINESS INTELLIGENCE

explore, while if you’re looking to build static reports, then R Mark-
down is a great solution. One of the key benefits of both of these
approaches is that you can embed complex R logic within your
charts, such as using Facebook’s prophet library to add forecasted
values to your charts.

4.3 ETLs

In the chapter on data pipelines, I discussed using raw, processed,
and cooked data. Most reports used for business intelligence should
be based on cooked data, where data is aggregated, enriched, and
sanitized. If you use processed or raw data instead of cooked
data when building reports, you’ll quickly hit performance issues
in your reporting pipeline. For example, instead of using the nyc-
tlc.yellow.trips table directly in the R section above, I could have
created a table with the aggregate values precomputed.

ETL is an abbreviation of Extract-Transform-Load. One of the
main uses of these types of processes is to transform raw data
into processed data or processed data into cooked data, such as
aggregation tables. One of the key challenges in setting up ag-
gregates tables is keeping the tables updated and accurate. For
example, if you started tracking cash payments using a new ab-
breviation (e.g. CAH), you would need to update the aggregation
process that computes monthly cash payments to include this new
payment type.

One of the outputs of the data pipeline is a raw events table, that
includes data for all of the tracking events encoded as JSON. One
of the types of ETL processes we can set up is a raw to processed
data transformation. In BigQuery, this can be implemented for the
login event as follows:

create table tracking.logins as (
select eventVersion,server_time

,JSON_EXTRACT_SCALAR(message, '$.userID') userID
,JSON_EXTRACT_SCALAR(message, '$.deviceType') type

from tracking.raw_events
where eventType = 'Login'

)



4.3. ETLS 59

This query filters on the login events in the raw events table, and
uses the JSON extract scalar function to parse elements out of the
JSON message. The result of running this DDL statement will be a
new table in the tracking schema that includes all of the login data.
We now have processed data for logins with userID and deviceType
attributes that can be queried directly.

In practice, we’ll want to build a table like this incrementally, trans-
forming only new data that has arrived since the last time the ETL
process ran. We can accomplish this functionality using the ap-
proach shown in the SQL code below. Instead of creating a new
table, we are inserting into an existing table. With BigQuery, you
need to specify the columns for an insert operation. Next, we find
the last time when the login table was updated, represented as the
updateTime value. And finally, we use this result to join on only
login events that have occured since the last update. These raw
events are parsed into processed events and added to the logins
table.

insert into tracking.logins
(eventVersion,server_time, userID, deviceType)

with lastUpdate as (
select max(server_time) as updateTime
from tracking.logins

)
select eventVersion,server_time

,JSON_EXTRACT_SCALAR(message, '$.userID') userID
,JSON_EXTRACT_SCALAR(message, '$.deviceType') type

from tracking.raw_events e
join lastUpdate l

on e.server_time > updateTime
where eventType = 'Login'

A similar approach can be used to create cooked data from pro-
cessed data. The result of the login ETL above is that we now
can query against the userID and deviceType fields directly. This
processed data makes it trivial to calculate useful metrics such as
daily active users (DAU), by platform. An example of computing
this metric in BigQuery is shown below.



60 CHAPTER 4. BUSINESS INTELLIGENCE

Figure 4.5: Cooked Data: DAU by Platform.

create table metrics.dau as (
select substr(server_time, 1, 10) as Date

,deviceType, count(distinct userID) as DAU
from `tracking.logins`
group by 1, 2
order by 1, 2

)

The result of running this query is a new table with the DAU
metric precomputed. A sample of this data is shown in the Cooked
Data table. Similar to the previous ETL, in practice we’d want
to build this metric table using an incremental approach, rather
than rebuilding using the complete data set. A slightly different
approach would need to be taken here, because DAU values for the
current day would need to be updated multiple times if the ETL
is ran multiple times throughout the day.

Once you have a set of ETLs to run for your data pipeline, you’ll
need to schedule them so that they run regularly. One approach
you can take is using cron to set up tasks, such as:

bq query --flagfile=/etls/login_etl.sql

It’s important to set up monitoring for processes like this, because a
failure early on in a data pipeline can have significant downstream
impacts. Tools such as Airflow can be used to build out complex
data pipelines, and provide monitoring and alerting.



4.4. REPORTING TOOLS 61

Figure 4.6: Setting up a Custom Data Source in Data Studio.

4.4 Reporting Tools

While R does provide useful tools for performing business intelli-
gence tasks, it’s not always the best tool for building automated
reporting. This is common when reporting tools need to used by
technical and non-technical users and vendor solutions for building
dashboards are often useful for these types of scenarios. Here are
a few of the different tools I’ve used in the past.

4.4.1 Google Data Studio

If you’re already using GCP, then Google Data Studio is worth
exploring for building dashboards to share within your organization.
However, it is a bit clunkier than other tools, so it’s best to hold
off on building dashboards until you have a mostly complete spec
of the reports to build.

The image above shows how to set up a custom query in Google
Data Studio to pull the same data sets as used in the R reports.
The same report as before, now implemented with Data Studio is
shown below.

The main benefit of this tool is that it provides many of the col-
laboration features build into other tools, such as Google Docs and
Google Sheets. It also refreshes reports as necessary to keep data
from becoming stale, but has limited scheduling options available.



62 CHAPTER 4. BUSINESS INTELLIGENCE

Figure 4.7: The Taxi Report recreated in Google Data Studio.

4.4.2 Tableau

One of the best visualization tools I’ve used is Tableau. It works
well for the use case of building dashboards when you have a com-
plete spec, and well as building interactive visualizations when per-
forming exploratory analysis. The heatmap for DC Universe On-
line was built with Tableau, and is one of many different types of
visualizations that can be built.

The main benefit of Tableau is ease-of-use in building visualizations
and exploring new data sets. The main drawback is pricing for li-
censes, and a lack of ETL tooling, since it is focused on presentation
rather than data pipelines.

4.4.3 Mode

At Twitch, we used a vendor tool called Mode Analytics. Mode
made it simple to share queries with other analysts, but has a



4.5. CONCLUSION 63

Figure 4.8: A heatmap in Tableau for the game DC Universe On-
line.

rather limited selection of visualization capabilities, and also was
focused on only presentation and not ETL type tasks.

4.4.4 Custom Tooling

Another approach that can be used is creating custom visualiza-
tions using tools such as D3.js and Protovis. At Electronic Arts,
D3 was used to create customer dashboards for game teams, such as
the Data Cracker tool built by Ben Medler for visualizing playtest-
ing data in Dead Space 2. Using custom tooling provides the most
flexibility, but also requires maintaining a system, and is usually
substantially more work to build.

4.5 Conclusion

One of the key roles of a data scientist at a startup is making sure
that other teams can use your product data effectively. Usually
this takes the form of providing dashboarding or other automated



64 CHAPTER 4. BUSINESS INTELLIGENCE

Figure 4.9: Line Charts in Mode Analytics.

Figure 4.10: The Data Cracker Tool for Dead Space 2. Source:
GDC Vault 2011.



4.5. CONCLUSION 65

reporting, in order to provide KPIs or other metrics to different
teams. It also includes identifying which metrics are important for
the company to measure.

This chapter has presented three different ways for setting up au-
tomated reporting in R, ranging from creating plots directly in R,
using R Markdown to generate reports, and using Shiny to build
dashboards. We also discussed how to write ETLs for transforming
raw data to processed data and processed data to cooked data, so
that it can be used for reporting purposes. And the last section
discussed some different vendor solutions for reporting, along with
tradeoffs.

After setting up tooling for business intelligence, most of the pieces
are in place for digging deeper into data science type of work. We
can move beyond retrospective types of questions, and move for-
ward to forecasting, predictive modeling, and experimentation.



66 CHAPTER 4. BUSINESS INTELLIGENCE



Chapter 5

Exploratory Data
Analysis

Once you’ve set up a data pipeline and collected data about user
behavior, you can start exploring the data in order to determine
how to improve your product. Exploratory Data Analysis (EDA)
is the process of investigating a data set to understand the shape
of the data, correlations between features, and signals in the data
that may be useful for building predictive models.

It’s useful to be able to perform this task in both a query language
and a scripting language. R provides useful tools for quickly un-
derstanding the shape of a data set, but can only analyze data
sets that can fit in memory. To work with massive data sets, SQL
is useful for computing summary stats and distributions across a
complete data set.

This chapter presents four types of exploratory analyses, including
computing summary statistics, plotting features, correlation anal-
ysis, and weighting feature importance for a simple linear model.
The goal of performing this type of work is to be able to better un-
derstand user behavior, determine how to improve a product, and
investigate if the data provides useful signals.

We’ll use the Natality BigQuery data set for the EDA examples.
This data set provides information about births in the USA over the
past 50 years. The goal of this analysis is to determine which factors

67



68 CHAPTER 5. EXPLORATORY DATA ANALYSIS

are correlated with birth weight, and build a linear regression model
to predict outcomes.

5.1 Summary Statistics

The first thing we’ll want to do when exploring a new data set
is computing summary statistics that help us understand the data
set. This can include statistics such as the mean and median values,
and well as extremes such as minimum and maximum values. R
provides a function called summary that calculates these statistics
for every column in a data frame. An example using this function
is shown in the code snippet below.

library(bigrquery)
project <- "your_project_id"
sql <- "
SELECT year, plurality, mother_age, father_age,

gestation_weeks, ever_born,
mother_married, weight_pounds

FROM `bigquery-public-data.samples.natality`
order by rand()
LIMIT 100000"

df <- query_exec(sql, project = project,
use_legacy_sql = FALSE)

summary(df[, 2:5])

The script queries the Natality data set in BigQuery and pulls a
sample data set locally. Next, the second through fifth columns of
the result set are passed to the summary function. The result of
calling this function is shown in the figure below. For each of the
columns, the function calculations min, mean, max values, and the
25th, 50th, and 75th percentiles for each attribute. It also counts
the number of instances of missing (NA) values.

Summary provides a quick way of understanding a data set, but
usually requires further digging to really understand the shape of
the data. The next section shows how to use histograms to build a
more complete understanding of a data set. One of the interesting
features in the data set is the plurality column, which describes the
number of children carried as part of the pregnancy (litter size).



5.1. SUMMARY STATISTICS 69

Figure 5.1: Summary Stats for the Natality Data Set.

The median is slightly above 1, because of the rare occurrence of
twins, triples, or even more children. Due to the skewness of this
distribution, the summary stats do not provide a good overview of
how common twins or triplets are in human pregnancies.

To find out how common twins and triplets are we can use the sqldf
library, which enables queries to be performed on R data frames.
The code below shows how to count the number of pregnancies that
result in multiple children being delivered. The results show that
twins have a frequency of about 2.4%, triplets occur in about 0.1%
of pregnancies, and quadruplets have a frequency of about 0.009%.

library(sqldf)
df <- df[!is.na(df$plurality), ]
sqldf("select plurality, sum(1) as Babies
from df group by 1
order by 1")

These results are based on a sample of 1,000,000 pregnancies. Ide-
ally, we want to calculate these statistics across our compute data
set. Aggregate values such as min, max, and mean are easy to com-
pute, because SQL has aggregations for these operations built-in.
However, calculating the median and 25th and 75th percentiles is
often non trivial. If you try to apply the percentile_cont operation
to the complete data set of 138M pregnancies, BigQuery will throw
an exception, because this is an analytic function that will shuffle
all of the records to a single node.

There’s a few different approaches to work around this limitation.
BigQuery does provide an approximate quantiles function that will
support this size of data. You can also partition the data set using a



70 CHAPTER 5. EXPLORATORY DATA ANALYSIS

randomly generated value, such as rand()*10 and take the average,
to get an approximate result. These approaches work well for the
25th, 50th, and 75th percentile values, but are not as accurate for
extreme results, such as the 99.9th percentile. A third approach
is to provide a partition key to split up the data, preventing too
much data from being shuffled to a single machine. We can use the
year field, as shown in the following query.

select year, sum(1) births, min(father_age) Min
,avg(Q1) Q1, avg(Q2) Median
,round(avg(father_age), 1) Mean
,avg(Q3) Q3, max(father_age) Max

from (
select year, father_age
,percentile_cont(father_age, 0.25)

over (partition by year) as Q1
,percentile_cont(father_age, 0.50)

over (partition by year) as Q2
,percentile_cont(father_age, 0.75)

over (partition by year) as Q3
FROM `bigquery-public-data.samples.natality`
where mod(year, 5) = 0 and year >= 1980

)
group by 1 order by 1

This approach calculates the 25th, 50th, and 75th percentiles for
the father_age column. The percentile_cont function is an ana-
lytic function, meaning that it returns a result for every record,
and needs to be aggregated to create a summary statistic. The
query above shows how to compute the same statistics provided
by the R summary function using BigQuery, while partitioning the
data by the year of the birth. This query generates the following
table, which shows statistics about the father age.

There’s a few interesting trends in this data worth noting. The
first is the consistent value of 99 years, as the maximum father age.
This is likely a data quality issue, and 99 may be set as the age
when the age of the father is unknown. Another trend is that the
median father age has been increasing over the years, from 28 in
1980 to 32 in 2005. This isn’t normalized for the first child, but the
summary statistics do indicate a trend that families are starting to
have children later in life.



5.2. PLOTTING 71

Figure 5.2: Birth Summary Statistics by Year (Father Age).

5.2 Plotting

Summary statistics provide a quick way of getting a snapshot of a
data set, but often don’t provide a good overview of how data is
distributed. To build a more complete understanding of the shape
of a data set, its useful to plot data in various ways, such as using
histograms.

hist(df$weight_pounds, main = "Distribution of Weights"
,xlab = "Weight")

The R code above shows how to plot a histogram of the birth
weights in our sampled data set. The result is the following his-
togram, which seems to indicate that the value is normally dis-
tributed. The majority of births weights are between 6 and 9
pounds.

plot(ecdf(df$weight_pounds), main = "CDF of Weights",
xlab = "Weight", ylab = "CDF")

Histograms are useful for visualizing distributions, but they do have
a number of problems, such as the number of buckets influencing
whether the distribution is unimodal vs bimodal. It’s also usually
difficult to determine percentiles directly from a histogram. One
type of visualization that works better for conveying this type of
information is the cumulative distribution function (CDF). The
code above shows how to visualize the same data, but uses a CDF.



72 CHAPTER 5. EXPLORATORY DATA ANALYSIS

Figure 5.3: Distribution of Birth Weights.

The code applies the empirical cumulative distribution function,
which is similar to computing the running sum and dividing by the
total number of instances in the data set. One of the key benefits
of CDF plots is that you can directly read percentile values from
the visualization. Both types of visualizations can be generated
using SQL and then plotting the results in a tool like Excel, but
histograms are usually computationally less expensive, since they
do not require analytic functions.

Another useful trick to explore when investigating data sets is trans-
forming features, such as applying a log transform. This is useful
when a data set is not normally distributed. For example, session
data is usually a single-sided distribution with a long tail, and ap-
plying a log transform often provides a better summarization of
the data when plotted.

hist(df$gestation_weeks, main = "Gestation Weeks",
xlab = "Weeks")

hist(log(df$gestation_weeks), main = "Gestation
Weeks (Log Transform)", xlab = "log(Weeks)")

The code above shows how to transform the gestation weeks fea-
ture with a log transform. This is useful for distributions with long



5.2. PLOTTING 73

Figure 5.4: The same data, plotted as a CDF.

tails, and only positive values. The code generates the following
two plots, which show similar results. For this example the trans-
formation was not useful, but it’s a trick worth exploring when you
need to fit data from a skewed distribution to something closer to
a normal distribution. You can also apply a square root transfor-
mation to generate useful plots.

An alternative to CDFs that conveys information about percentiles
directly is box plots. Box plots show the 25th, 50th, and 75th
percentiles, as well as interquartile ranges and outliers. This type of

Figure 5.5: Log Transforming Gestation Weeks.



74 CHAPTER 5. EXPLORATORY DATA ANALYSIS

Figure 5.6: Birth weight based on number of previous children.

plot is often useful when comparing median values across different
partitions of data.

sample <- df[df$ever_born <= 6, ]
sample$ever_born <- sample$ever_born - 1
boxplot(weight_pounds~ever_born,data=sample,

main="Birth Weight vs Prior Births",
xlab="Prior Children", ylab="Birth Weight")

An example of creating a box plot in R is shown in the code snip-
pet above. This code creates a plot of different quartiles ranges,
based on the number of previous children delivered by the mother.
There’s no strong pattern indicated by this plot, but it does look
like the first child delivered has a slightly lower weight than the
following children delivered by a mother.

Another type of useful visualization is scatter plots, which compare
the values of two different features in a data set. Scatter plots
are useful for showing whether two features are strongly or weakly
correlated. The R code below shows how to plot a comparison of



5.2. PLOTTING 75

Figure 5.7: A comparison of the gestation period and birth weight.

the gestation period and birth weight. I’ve filtered out values with
gestations periods longer than 90 weeks, because these are suspect.

sample <- df[1:10000, ]
sample <- sample[sample$gestation_weeks < 90, ]
plot(sample$gestation_weeks, sample$weight_pounds,

main = "Birth Weight vs Gestation Weeks",
xlab= " Gestation Weeks", ylab = "Birth Weight")

The results are shown in the visualization above. It’s clear from this
plot that significantly shorter gestation periods result in lower birth
weights, but it’s unclear how strong the correlation is for periods
longer than 35 weeks. Overall, the features have an R-squared
value of 0.25 for the sample data set. In order to determine which
features are correlated with birth weights, we’ll need to use different
methods discussed in the next section.



76 CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.3 Correlation Analysis

It’s useful to know if certain features are predictive of other values
in a data set. For example, if we know that users that use a certain
product feature are retained longer than other users, it provides
useful insight into product development. Correlation analysis helps
to understand which features are correlated within a data set. Each
feature is compared with all other features in a data set. However,
often the goal is to understand only the correlation between a single
feature, rather than a complete matrix of comparisons.

It’s also important to avoid coming to strong conclusions based
on only correlation analysis, because it’s not possible to establish
causality. Usually the more dedicated users will explore more of
the options provided by an application, so trying to drive users
to perform a specific action is not going to necessarily increase
retention. For example, it’s common to see improved retention for
users that add social connections within an application, but driving
users to add a friend in an application might not result in the
desired outcome of longer user retention. It’s best to experiment
using controlled methodologies.

R has a built in function for performing correlation analysis. The
cor function computes the correlation between all of the different
columns in a data frame, using a specified methodology. The pear-
son method is useful when dealing with continuous values, and the
spearman method is useful when using discrete values, such as sur-
vey data. An example of computing a correlation matrix is shown
in the R snippet below.

res <- cor(df, method = "pearson",use = "complete.obs")
res <- ifelse(res > 0, res^.5, -abs(res)^.5)
library(corrplot)
corrplot(res, type = "upper", order = "hclust")

To visualize the results, I’ve included the corrplot library, which
creates a plot of the matrix. I noticed that the correlations be-
tween different features in the data set were weak, so I applied a
square root transformation to make the results more readable. The
resulting plot is shown in the figure below. As noted earlier, the
gestation period is not the strongest factor in determining birth
weight. The plurality is actually the strongest predictor of weight.



5.3. CORRELATION ANALYSIS 77

Figure 5.8: Correlation Matrix for the Natality Data Set (R-values
have been square-rooted for visibility).



78 CHAPTER 5. EXPLORATORY DATA ANALYSIS

Similar to plotting histograms, it’s useful to try different transfor-
mations of features when calculating correlations. For example,
when predicting housing prices, the log transform of the square
footage of a home is often a stronger indicator of the home value
than the raw square footage value.

5.4 Feature Importance

Often the goal in exploring a data set is to determine which features
are useful for predicting an outcome. This is similar to correlation
analysis, but instead of evaluating the impact of each feature in iso-
lation, the goal is to determine the significance of a single feature
when including all other features. Correlation analysis is a way
of understanding the marginal effect of a feature, and feature im-
portance is a way of understanding the unique effect of a feature.
This is useful for dealing with heavily correlated features, such
as number of sessions versus total session length. Both are likely
correlated with user retention, but one feature will be a stronger
indicator than the other. LIME is a generalization of this type of
analysis worth exploring.

While the next chapter will cover predictive modeling in more de-
tail, we’re going to use a simple linear model here to show how to
perform feature analysis. Our goal for this example is to predict
birth weight, which is a continuous feature. Given this problem
specification, regression is a good fit for predicting outcomes. We
can build a linear regression model, and then evaluate the impor-
tance of different features in the model to determine which factors
are strong predictors of the outcome. The following code example
shows how to build a linear regression model in R, and to measure
the importance of features using different methods.

library(relaimpo)
fit <- lm(weight_pounds ~ . , data = df)
boot <- boot.relimp(fit, b = 10,

type = c("lmg", "first", "last", "pratt"),
rank = TRUE, diff = TRUE, rela = TRUE)

booteval.relimp(boot)
plot(booteval.relimp(boot,sort=TRUE))



5.5. CONCLUSION 79

Figure 5.9: Feature Weighting for the Natality data set.

The results of this script are shown in the plots above. Different ap-
proaches are used to weight the features, and all of these methods
show that plurality is the strongest feature in determining birth
weight. The script first fits a linear regression model by specify-
ing weight_points as the target value, and then uses the relative
importance library to determine which features are significant in
determining the outcome.

5.5 Conclusion

Exploratory data analysis is one of the key competencies of a data
scientist at a startup. You should be able to dig into a new data set
and determine how to improve your product based on the results.
EDA is a way of understanding the shape of a data set, exploring
correlations within the data, and determining if there’s a signal for
modeling an outcome based on the different features.

Exploratory analysis often involves some lightweight modeling to
determine the importance of different features within a data set. In
the next chapter, we’ll dig into predictive modeling, which focuses
on estimating outcomes based on a number of different features.



80 CHAPTER 5. EXPLORATORY DATA ANALYSIS



Chapter 6

Predictive Modeling

Machine learning can be used to make predictions about the future.
You provide a model with a collection of training instances, fit the
model on this data set, and then apply the model to new instances
to make predictions. Predictive modeling is useful for startups,
because you can make products that adapt based on expected user
behavior. For example, if a viewer consistently watches the same
broadcaster on a streaming service, the application can load that
channel on application startup. Predictive models can also be used
to build data products, such as a recommendation system that
could recommend new broadcasters to the viewer.

This chapter provides a light introduction to predictive modeling
with machine learning. I’ll discuss the different types of prediction
problems and introduce some of the commonly used approaches,
present approaches for building models using open tools and script-
ing languages, and provide an applied example of clustering. The
goal for this chapter isn’t to provide an in-depth understanding of
specific methods, but to show how a variety of tools can be used
to quickly prototype different types of models.

6.1 Types of Predictive Models

Machine learning models typically fail into two categories: super-
vised learning and unsupervised learning. For supervised problems,

81



82 CHAPTER 6. PREDICTIVE MODELING

the data being used to fit a model has specified labels, or target
variables. For example, if the goal is to identify which users in a
mobile game are likely to become purchasers, we can use transac-
tion data from past users as labels, where 1 means a paid user and
0 means a free user. The label is used as input to the supervised
algorithm to provide feedback when fitting the model to a training
data set. Classification and regression algorithms are two types of
supervised learning. In a classification task, the goal is to predict
the likelihood of an outcome, such as whether or not a mobile game
user will make a purchase. For regression, the goal is to predict a
continuous variable, such as the price of a home given a description
of different features.

For unsupervised problems, no explicit labels are provided for train-
ing a model. The most common type of unsupervised learning
method is clustering, which infers labels by forming groups of dif-
ferent instances in a data set. Clustering is useful for answering
segmentation questions, such as what are the different archetypes
of users that a product should support.

There are two other types of machine learning models that I won’t
cover here: semi-supervised learning and reinforcement learning.
Semi-supervised learning is a process that identifies target labels
as part of the training process, and is often implemented with au-
toencoders in deep learning. Reinforcement learning is a model
that is updated based on a reward policy, where the actions taken
by a model provide positive and negative feedback signals and are
used to update the model.

For a startup, you’re likely going to get started with classification
and regression models, which are often referred to as classic, or
shallow machine learning problems. There’s a wide variety of dif-
ferent approaches that can be used. Some common approaches for
classification are logistic regression, naive bayes, decision trees, and
ensemble methods such as random forests and XGBoost. Common
approaches for regression include many of the same approaches as
classification, but linear regression is used in place of logistic re-
gression. Support vector machines were popular back when I was
in grad school a decade ago, but now XGBoost seems to be the
king of shallow learning problems.

It’s important to know how different algorithms are implemented,
because if you want to ship a predictive model as part of a product,
it needs to be reliable and scalable. Generally, eager models are



6.2. TRAINING A CLASSIFICATION MODEL 83

preferred over lazy models when shipping products. Eager models
are approaches that generate a ruleset as part of the training pro-
cess, such as the coefficients in a linear regression model, while a
lazy model generates the rule set at run time. For example, a near-
est neighbor (k-NN) model is a lazy approach. Lazy methods are
often useful for building online learning systems, where the model
is frequently updated with new data while deployed, but may have
scalability issues.

How the performance of a predictive model is evaluated depends on
the type of problem being performed. For example, metrics such as
mean absolute error (MAE), root-mean squared error (RMSE), and
correlation coefficients are useful for evaluating regression models,
while ROC area under the curve (AUC), precision, recall, and lift
are useful for classification problems.

6.2 Training a Classification Model

This section presents a few different approaches that can be used
to build a classification model. We’ll use the same data set as the
past chapter on EDA, but instead of predicting birth weights in
the Natality data set, we’ll attempt to predict which pregnancies
will result in twins instead of singletons.

To start, we’ll need to pull a data set locally that we can use as
input to different tools. The R code below shows how to sample
100k pregnancies and save the data frame to a CSV. This query is
similar to the one from the past chapter, but I’ve included addi-
tional constraints in the where clause to avoid pulling records with
missing (NA) values.

library(bigrquery)
project <- "your_project_id"
options(stringsAsFactors = FALSE)

sql <- "SELECT year, mother_age
,father_age, gestation_weeks
,case when ever_born > 0 then ever_born

else 0 end as ever_born
,case when mother_married then 1



84 CHAPTER 6. PREDICTIVE MODELING

else 0 end as mother_married
,weight_pounds
,case when plurality = 2 then 1 else 0 end as label

FROM `bigquery-public-data.samples.natality`
where plurality in (1, 2)

and gestation_weeks between 1 and 90
and weight_pounds between 1 and 20

order by rand()
LIMIT 100000"

df <- query_exec(sql, project = project,
use_legacy_sql = FALSE)

write.csv(df, "natality.csv", row.names = FALSE)

One of the challenges with this data set is that there are way more
negative examples in this data set than there are positive examples.
Only 2.4% of the pregnancies in the sampled data set have a label
of ‘1’, indicating twins. This means we’ll need to use metrics other
than accuracy in order to gauge the performance of different ap-
proaches. Accuracy is not a good metric for problems with a large
class imbalance such as this one, because predicting a label of 0 for
every record results in an accuracy of 97.6%. Instead, we’ll use the
AUC curve metric for evaluating different models, since it’s useful
for handling problems with imbalanced classes.

Another consideration when evaluating different models is using
different training, test, and holdout data sets. The holdout data
set is withheld until the end of the model training process, and
used only once for evaluation. Training and test data sets can
be used as frequently as necessary when building and tuning a
model. Methods such as 10-fold cross validation are useful for
building robust estimates of model performance. This is typically
the approach I take when building models, but for the sake of
brevity is not covered in all of the different examples below.

6.2.1 Weka

One of the tools that I like to use for exploratory analysis and
evaluating different modeling algorithms is Weka1, which is imple-
mented in Java and provides a GUI for exploring different models.

1https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/


6.2. TRAINING A CLASSIFICATION MODEL 85

Figure 6.1: Visualizing different features in the data set with Weka.

It’s a bit dated now, but I still find it quite useful for quickly dig-
ging into a data set and determining if there’s much of a signal
available for predicting an outcome.

The chart above shows visualizations of different features in the
data set. The red data points represent the positive examples
(twins), and the blue data points represent negative examples (sin-
gletons). For features with a strong signal, it’s often possible to
draw a vertical line that separates most of the red and blue data
points. This isn’t the case with this data set, and we’ll need to
combine different features to build a good classifier.

I used Weka to explore the following algorithms and to compute
AUC metrics when using 10-fold cross validation:

• Logistic: 0.892
• LogitBoost: 0.908

The best performing algorithm out of the ones I explored was Log-
itBoost. This algorithm has a number of hyperparameters, such
as number of iterations, that be be tuned to further improve the
performance of the model. There may be other algorithms in Weka
that work even better on this data set, but our initial exploration
has resulted in promising results.

A visualization of the ROC curve for the logistic regression model
is shown in the figure below. It’s also possible to explore the im-



86 CHAPTER 6. PREDICTIVE MODELING

Figure 6.2: Visualizing the ROC Curve with Weka.



6.2. TRAINING A CLASSIFICATION MODEL 87

portance of different features in a logistic regression model with
Weka. You can inspect the coefficients of the model directly. For
example, weight_pounds has the highest coefficient value of 0.93.
It’s also possible to use the InfoGain attribute ranker to deter-
mine which features are most important for this classification task.
Weka found that weight_pounds (0.0415) was the most influential
feature, followed by gestation_weeks (0.0243).

Weka is usually not the best choice for productizing models, but it
does provide a useful tool for exploring a wide variety of different
algorithms.

6.2.2 BigML

Another tool that I’ve used in my startup experience is BigML2.
This tool is similar to Weka in that it provides a GUI (web-based)
for exploring different types of models without requiring any coding.
The tool has fewer options than Weka, but has more recent models
such as DeepNets.

The image below shows one of the feature importance tools pro-
vided by BigML. These tools are useful for understanding which
features are useful in predicting an outcome. I explored two differ-
ent models with BigML, resulting in the following AUC metrics:

• Logistic: 0.890
• DeepNet: 0.902

Instead of using 10-fold cross validation, I used a single 80/20 split
of the data to evaluate the different models. The performance of
the models in BigML was similar to Weka, but did not quite match
the performance of LogitBoost.

In addition to plotting ROC curves, as shown below, BigML can
plot other useful visualizations such as lift charts. BigML also
provides useful classification metrics such as precision, recall, and
F1 score.

2https://bigml.com/

https://bigml.com/


88 CHAPTER 6. PREDICTIVE MODELING

Figure 6.3: Evaluating Feature Importance in a Logistic Model
with BigML.

Figure 6.4: Evaluation Metrics provided by BigML.



6.2. TRAINING A CLASSIFICATION MODEL 89

6.2.3 R — Glmnet

We can implement the logistic regression model that we’ve already
evaluated using the glm library in R. The generalized linear mod-
els function can be applied to logistic regression by specifying the
binomial family as input. R code that loads the CSV and trains a
logistic regression model is shown below.

df <- read.csv("Natality.csv")
fit <- glm(label ~ .,family=binomial(), data=df)
fit

library(Deducer)
rocplot(fit)

After fitting the model, the fit statement outputs the coefficients of
the model. To evaluate the performance of the model, I used the
Deducer library, which includes an rocplot function. For this basic
model fitting approach, I did not perform any cross validation. The
result was an AUC of 0.890 on the training data set.

To use regularization when fitting a logistic regression model in
R, we can use the glmnet library, which provides lasso and ridge
regression. An example of using this package to evaluate feature
importance is shown in the code below:

library(glmnet)
x <- sparse.model.matrix(label ~ ., data = df)
y <- as.factor(df$label)

fit = glmnet(x, y, family = "binomial")
plot(fit, xvar = "dev", label = TRUE)

By default, the “least squares” model is used to fit the training data.
The chart below shows how the coefficients of the model vary as
additional factors are used as input to the model. Initially, only the
weight_pounds features is used as input. Once this term begins
getting penalized, around the value of -0.6, additional features are
considered for the model.



90 CHAPTER 6. PREDICTIVE MODELING

Figure 6.5: ROC Curve for the logistic regression model in R.

Figure 6.6: Feature weights based on different lambda values for
glmnet.



6.2. TRAINING A CLASSIFICATION MODEL 91

Figure 6.7: Performance (AUC) of the glmnet model based on
different lambda values.

cvfit = cv.glmnet(x, y, family = "binomial",
type.measure = "auc")

cat(paste("ROC:", max(cvfit$cvlo)))
plot(cvfit)

The glmnet package provides a built-in cross validation feature
that can be used to optimize for different metrics, such AUC. The
R code above shows how to train a logistic regression model using
this feature, and plots the outcome in the figure shown above. The
AUC metric for the regularized logistic regression model was 0.893.

6.2.4 Python — scikit-learn

Another tool that I wanted to cover in this section is scikit-learn,
because it provides a standardized way of exploring the accuracy
of different types of models. I’ve been focused on R for model
fitting and EDA so far, but the Python tooling available through
scikit-learn is pretty useful.



92 CHAPTER 6. PREDICTIVE MODELING

# load the data set
import pandas as pd
df = pd.read_csv('./Natality.csv')

# build a random forest classifier
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
x = df.drop('label', axis=1)
y = df['label']
rf.fit(x, y)

# evaluate the results
from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, _ =
roc_curve(y, rf.predict(x))

roc_auc = auc(false_positive_rate, true_positive_rate)

# plot the curve
import matplotlib.pyplot as plt
plt.plot(false_positive_rate, true_positive_rate,

'b', label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
plt.show()

The Python code above shows how to read in a data frame using
pandas, fit a random forest model using sklearn, evaluate the per-
formance of the model, and plot the results, as shown in the figure
below.

6.3 Clustering

One of the types of analysis that is useful for startups is under-
standing if there’s different segments, or clusters of users. The
general approach to this type of work is to first identify clusters in
the data, assign labels to these clusters, and then assign labels to
new records based on the labeled clusters. This section shows how
to perform this type of process using data from the 2016 Federal
Reserve Survey of Consumer Finances3.

3https://www.federalreserve.gov/econres/scfindex.htm

https://www.federalreserve.gov/econres/scfindex.htm


6.3. CLUSTERING 93

Figure 6.8: ROC Curve for the RF model in scikit-learn.

The survey data set provides a breakdown of assets for thousands
of households in the US. The goal of this clustering exercise is to
identify if there are different types of affluent households, with a
net worth of $1M+ USD. The complete code to load the data and
perform the analysis is provided in the Jupyter notebook online4.
Prior analysis with this data set is available online5.

For each of the surveyed households, we have a number of columns
that specify how assets are allocated for the household, including
residential and commercial real estate, business equity, retirement,
and many other assets. The first thing we want to do is determine
which assets have strong signals for clustering users. We can use
PCA, and a factor map to accomplish this goal:

# filter on affluent households
affluent <- households[households$netWorth >= 1000000,]
cat(paste("Affluent: ", floor(sum(affluent$weight))))

# plot a Factor Map of assets
fviz_pca_var(PCA(affluent, graph = FALSE),

col.var="contrib", gradient.cols = c("#00AFBB",
"#E7B800", "#FC4E07"), repel = TRUE)+
labs(title="Affluent Households - Assets Factor Map")

4https://bit.ly/2kp5ANb
5https://bit.ly/2koWEHi

https://bit.ly/2kp5ANb
https://bit.ly/2koWEHi


94 CHAPTER 6. PREDICTIVE MODELING

Figure 6.9: A factor map showing differences in asset allocations.

The results plotted above show that there are a few different as-
set groups that vary across affluent households. The most signif-
icant factor is business equity. Some other groupings of factors
include investment assets (STOCKS, BONDS) and real estate as-
sets/retirement funds.

6.3.1 How many clusters to use?

We’ve now shown signs that there are different types of million-
aires, and that assets vary based on net worth segments. To un-
derstand how asset allocation differs by net worth segment, we can
use cluster analysis. We first identify clusters in the affluent survey
respondents, and then apply these labels to the overall population
of survey respondents.



6.3. CLUSTERING 95

Figure 6.10: A hierarchical visualization of the cluster assignments.

k <- 7
res.hc <- eclust(

households[sample(nrow(households), 1000), ],
"hclust", k = k, graph = FALSE)

fviz_dend(res.hc, rect = TRUE, show_labels = FALSE)

To determine how many clusters to use, I created a cluster dendro-
gram using the code snippet above. The result is the figure shown
above. I also varied the number of clusters, k, until we had the
largest number of distinctly identifiable clusters.

If you’d prefer to take a quantitative approach, you can use the
fviz_nbclust function, which computes the optimal number of clus-
ters using a silhouette metric. For our analysis, I decided on 7.



96 CHAPTER 6. PREDICTIVE MODELING

Figure 6.11: A visualization of the two-principal components iden-
tified by PCA.

clarax <- clara(affluent, k)
fviz_cluster(clarax, stand = FALSE,

geom = "point", ellipse = F)

To cluster the affluent households into unique groupings, I used
the CLARA algorithm. A visualization of the different clusters is
shown above. The results are similar to PCA and the factor map
approach discussed earlier.



6.3. CLUSTERING 97

6.3.2 Cluster Descriptions

Now that we’ve determined how many clusters to use, it’s useful
to inspect the clusters and assign qualitative labels based on the
feature sets. The code snippet below shows how to compute the
average feature values for the 7 different clusters.

groups <- clarax$clustering
results <- as.data.frame(

t(aggregate(affluent,list(groups),mean)))
results[2:18,]

The results of this code block are shown below. Based on these
results, we came up with the following cluster descriptions:

• V1: Stocks/Bonds — 31% of assets, followed by home and
mutual funds

• V2: Diversified — 53% busequity, 10% home and 9% in other
real estate

• V3: Residential Real Estate — 48% of assets
• V4: Mutual Funds — 50% of assets
• V5: Retirement — 48% of assets
• V6: Business Equity — 85% of assets
• V7: Commercial Real Estate — 59% of assets

With the exception of cluster V7, containing only 3% of the popu-
lation, most of the clusters are relatively even in size. The second
smallest cluster represents 12% of the population while the largest
cluster represents 20%. You can use table(groups) to show the
unweighted cluster population sizes.

6.3.3 Cluster Populations by Net Worth

The last step in this analysis is to apply the different cluster assign-
ments to the overall population, and to group the populations by
net worth segments. Since we trained the clusters on only affluent
households, we need to use a classification algorithm to label the
non-affluent households in the population. The code snippet below
uses knn to accomplish this task. The remaining code blocks com-
pute the number of households that are classified as each cluster,
for each of the net worth segments.



98 CHAPTER 6. PREDICTIVE MODELING

Figure 6.12: Asset allocation amounts for the 7-identified clusters.



6.3. CLUSTERING 99

# assign all of the households to a cluster
groups <- knn(train = affluent, test = households,
cl = clarax$clustering, k = k, prob = T, use.all = T)

# figure out how many households are in each cluster
clusters <- data.frame(

c1 = ifelse(groups == 1, weights, 0),
...
c7 = ifelse(groups == 7, weights, 0)

)

# assign each household to a net worth cluster
nw <- floor(2*log10(nwHouseholds))/2
results <- as.data.frame(t(aggregate(clusters,

list(nw),sum)))

# compute the number of households for each segment
results$V1 <- results$V1/sum(ifelse(nw==4,weights,0))
...
results$V11 <- results$V11/sum(ifelse(nw==9,weights,0))

# plot the results
plot <- plot_ly(results, x = ~10^Group.1, y = ~100*c1,

type='scatter', mode = 'lines', name = "Stocks") %>%
add_trace(y = ~100*c2, name = "Diversified") %>%
...
add_trace(y = ~100*c7, name = "Commercial R.E.") %>%
layout(yaxis = list(title = '% of Households'),

xaxis=list(title = "Net Worth ($)", type = "log"),
title="Cluster Populations by Net Worth")

The results of this process are shown in the figure below. The chart
shows some obvious and some novel results: home ownership and
retirement funds make up the majority of assets for non-affluent
households, there is a relatively even mix of clusters around $2M
(excluding commercial real estate and business equity), and busi-
ness equity dominates net worth for the ultra-wealthy households,
followed by other investment assets.

For this clustering example, I explored survey data and identified
seven different types of affluent households. I then used these clus-



100 CHAPTER 6. PREDICTIVE MODELING

Figure 6.13: How the distribution of clusters varies based on House-
hold Net Worth.

ters to assign labels to the remaining households. A similar ap-
proach could be used at a startup to assign segmentation labels to
the user base.

6.4 Conclusion

Predictive modeling is an application of machine learning with a
wide variety of tools that can be used to get started. One of the first
things to consider when building a predictive model is determining
the outcome that you’re trying to predict, and establishing metrics
that you’ll use to measure success.

In this chapter, I showed four different approaches for building clas-
sification models for predicting twins during pregnancy. I showed
how the GUI based tools Weka and BigML can be used to evaluate
logistic regression models, ensemble models, and deep nets. I also
provided scripting examples for performing logistic regression with
regularization in R, and random forests in Python. I concluded
the chapter with an example of clustering, which may by useful for
performing segmentation tasks for a startup.

Independent of the approach being used to build a predictive model,
it’s important to be able to output a model specification as a result
of your training process. This can be a list of coefficient weights for



6.4. CONCLUSION 101

a linear regression model, a list of nodes and weights for a random
forest model, or a list of neuron weights and activations for a deep
learning network. In the next chapter, I’ll discuss how to scale
predictive models to millions of users, and being able to represent
a trained model as a specification is a prerequisite to production.



102 CHAPTER 6. PREDICTIVE MODELING



Chapter 7

Productizing Models

One the key ways that a data scientist can provide value to a
startup is by building data products that can be used to improve
products. Making the shift from model training to model deploy-
ment means learning a whole new set of tools for building produc-
tion systems. Instead of just outputting a report or a specification
of a model, productizing a model means that a data science team
needs to support operational issues for maintaining a live system.

An approach I’ve used to ease this transition is managed tools, such
as Google Dataflow, which provides a managed and scalable solu-
tion for putting models into production. Most of the approaches
discussed in this chapter are using a serverless approach, because
it’s usually a better fit for startups than manually provisioning
servers. Using tools like Dataflow also enables data scientists to
work much closer with engineering teams, since it’s possible to set
up staging environments were portions of a data pipeline can be
tested prior to deployment. Most early data scientists at a startup
will likely be playing a machine learning (ML) engineer role as well,
by building data products.

Rather than relying on a engineering team to translate a model
specification to a production system, data scientists should have
the tools needed to scale models. One of the ways I’ve accom-
plished this in the past is by using predictive model markup lan-
guage (PMML) and Google’s Cloud Dataflow. Here is the workflow
I recommend for building and deploying models:

103



104 CHAPTER 7. PRODUCTIZING MODELS

• Train offline models in R or Python.
• Translate the models to PMML.
• Use Dataflow jobs to ingest PMML models for production.

This approach enables data scientists to work locally with sampled
data sets for training models, and then use the resulting model
specifications on the complete data set. The third step may take
some initial support from an engineering team, but only needs to
be set up once. Using this approach means that data scientists can
use any predictive model supported by PMML, and leveraging the
managed Dataflow service means that the team does not need to
worry about maintaining infrastructure.

In this chapter, I’ll discuss a few different ways of productizing
models. First, I discuss how to train a model in R and output the
specification to PMML. Next, I provide examples of two types of
model deployments: batch and live. And finally, I’ll discuss some
custom approaches that I’ve seen teams use to productize models.

7.1 Building a Model Specification

To build a predictive model, we’ll again use the Natality public
data set. For this chapter, we’ll build a linear regression model for
predicting birth weights. The complete notebook for performing
the model building and exporting process is available online1. The
first part of the script downloads data from BigQuery and stores
the results in a data frame.

library(bigrquery)
project <- "gcp_project_id"

sql <- "
SELECT year, plurality, apgar_5min, mother_age

,father_age, gestation_weeks, ever_born
,mother_married, weight_pounds

FROM `bigquery-public-data.samples.natality`
order by rand()
LIMIT 10000"

1https://github.com/bgweber/WindfallData/blob/master/natality

https://github.com/bgweber/WindfallData/blob/master/natality


7.1. BUILDING A MODEL SPECIFICATION 105

df <- query_exec(sql, project = project
, use_legacy_sql = FALSE)

Next, we train a linear regression model to predict the birth weight,
and compute error metrics:

lm <- lm(weight_pounds ~ ., data = df)
summary(lm)
cor(df$weight_pounds, predict(lm, df))
mean(abs(df$weight_pounds - predict(lm, df)))
sqrt(mean(abs(df$weight_pounds - predict(lm, df)^2)))

Which produces the following results:

• Correlation Coefficient: 0.335
• Mean Error: 0.928
• RMSE: 6.825

The model performance is quite weak, and other algorithms and
features could be explored to improve it. Since the goal of this
chapter is to focus on productizing a model, the trained model is
sufficient.

The next step is to translate the trained model into PMML. The
r2pmml R package and the jpmml-r tool make this process easy
and support a wide range of different algorithms. The first library
does a direct translation of a R model object to a PMML file, while
the second library requires saving the model object to an RDS file
and then running a command line tool. We used the first library
to do the translation directly:

library(r2pmml)
r2pmml(lm, "natality.pmml")

This code generates a pmml file we can use for model production.
The PMML file format specifies the data fields to use for the model,
the type of calculation to perform (regression), and the structure
of the model. In this case, the structure of the model is a set of
coefficients, which is defined as follows:



106 CHAPTER 7. PRODUCTIZING MODELS

<RegressionTable intercept="7.5619">
<NumericPredictor name="year"

coefficient="3.6683E-4"/>
<NumericPreda ictor name="plurality"

coefficient="-2.0459"/>
...
<NumericPredictor name="mother_married"

coefficient="0.2784"/>
</RegressionTable>

We now have a model specification that we are ready to productize
and apply to our entire data set.

7.2 Batch Deployments

In a batch deployment, a model is applied to a large collection of
records, and the results are saved for later use. This is different
from live approaches which apply models to individual records in
near real-time. A batch approach can be set up to run of a regular
schedule, such as daily, or ad-hoc as needed.

7.2.1 SQL Query

The first approach I’ll use to perform batch model deployment is
one of the easiest approaches to take, because it uses BigQuery
directly and does not require spinning up additional servers. This
approach applies a model by encoding the model logic directly in
a query. For example, we can apply the linear regression model
specified in the PMML file as follows:

select weight_pounds as actual,
+ 11.82825946749738
+ year * -0.0015478882184680862
+ plurality * -2.1703912756511254
+ apgar_5min * -7.204416271249425E-4
+ mother_age * 0.011490472355621577
+ father_age * -0.0024906543152388157
+ gestation_weeks * 0.010845982465606988



7.2. BATCH DEPLOYMENTS 107

+ ever_born * 0.010980856659668442
+ case when mother_married then 1 else 0 end*0.264942

as predicted
from records

The result is that each record in the data set now has a predicted
value, calculated based on the model specification. For this exam-
ple, I manually translated the PMML file to a SQL query, but you
could build a tool to perform this function. Since all of the data
is already in BigQuery, this operation runs relatively quickly and
is inexpensive to perform. It’s also possible to validate a model
against records with existing labels in SQL:

select sum(1) as records
,corr(actual, predicted) as Correlation
,avg(abs(actual - predicted)) as MAE
,avg(abs( (predicted - actual)/actual )) as Relative

from predictions

The results of this query show that our model has a mean-absolute
error of 0.92 lbs, a correlation coefficient of 0.33, and a relative error
of 15.8%. Using SQL is not limited to linear regression models, and
can be applied to a wide range of different types of models, even
Deep Nets. Here’s how to modify the prior query to compute a
logistic rather than linear regression:

1/(1 + exp(-1*(
--regression calculation

))) as predicted

I’ve also used this approach in the past to deploy boosted models,
such as AdaBoost. It’s useful when the structure of the model
is relatively simple, and you need the results of the model in a
database.

7.2.2 DataFlow — BigQuery

If your model is more complex, Dataflow provides a great solution
for deploying models. When using the Dataflow Java SDK, you



108 CHAPTER 7. PRODUCTIZING MODELS

Figure 7.1: Components in the BigQuery Batch Deployment.

define an graph of operations to perform on a collection of objects,
and the service will automatically provision hardware to scale up
as necessary. In this case, our graph is a set of three operations:
read the data from BigQuery, calculate the model prediction for
every record, and write the results back to BigQuery. This pipeline
generates the Dataflow DAG shown below.

I use IntelliJ IDEA for authoring and deploying Dataflow jobs.
While setting up the Java environment is outside of the scope of
this book, the pom file used for building the project is available
on Github. It includes the following dependencies for the Dataflow
sdk and the JPMML library:

<dependency>
<groupId>com.google.cloud.dataflow</groupId>
<artifactId>google-cloud-dataflow-java-sdk-all

</artifactId>
<version>2.2.0</version>

</dependency>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.3.9</version>

</dependency>

As shown in the figure below, our data flow job consists of three
steps that we’ll cover in more detail. Before discussing these steps,
we need to create the pipeline object:



7.2. BATCH DEPLOYMENTS 109

Figure 7.2: The Dataflow graph of operations used in this tutorial.



110 CHAPTER 7. PRODUCTIZING MODELS

PmmlPipeline.Options options = PipelineOptionsFactory
.fromArgs(args).withValidation()
.as(PmmlPipeline.Options.class);

Pipeline pipeline = Pipeline.create(options);

We create a pipeline object, which defines the set of operations to
apply to a collection of objects. In our case, the pipeline is operat-
ing on a collection of TableRow objects. We pass an options class
as input to the pipeline class, which defines a set of runtime argu-
ments for the dataflow job, such as the GCP temporary location
to use for running the job.

The first step in the pipeline is reading data from the public Big-
Query data set. The object returned from this step is a PCollection
of TableRow objects. The feature query String defines the query
to run, and we specify that we want to use standard SQL when
running the query.

private static final String query =
"SELECT year, plurality, ... weight_pounds\n" +
"FROM `bigquery-public-data.samples.natality`";

pipeline.apply(BigQueryIO.read().fromQuery(query)
.usingStandardSql().withoutResultFlattening())

The next step in the pipeline is to apply the model prediction to
every record in the data set. We define a PTransform that loads
the model specification and then applies a DoFn that performs the
model calculation on each TableRow.

.apply("PMML Application", new PTransform
<PCollection<TableRow>, PCollection<TableRow>>() {

model=new RegressionModelEvaluator(PMMLUtil.unmarshal(
Resources.getResource("natality.pmml").openStream()));

return input.apply("To Predictions", ParDo.of(
new DoFn<TableRow, TableRow>() {
@ProcessElement



7.2. BATCH DEPLOYMENTS 111

public void processElement(ProcessContext c) {
/* Apply Model */

}})))

The apply model code segment is shown below. It retrieves the
TableRow to create an estimate for, creates a map of input fields for
the pmml object, uses the model to estimate the birth weight, cre-
ates a new TableRow that stores the actual and predicted weights
for the birth, and then adds this object to the output of this DoFn.
To summarize, this apply step loads the model, defines a function
to transform each of the records in the input collection, and creates
an output collection of prediction objects.

TableRow row = c.element();
HashMap<FieldName, Double> inputs = new HashMap<>();
for (String key : row.keySet()) {
if (!key.equals("weight_pounds")) {
inputs.put(FieldName.create(key), Double

.parseDouble(row.get(key).toString()));
}

}

Double estimate =(Double)model.evaluate(inputs)
.get(FieldName.create("weight_pounds"));

TableRow prediction = new TableRow();
prediction.set("actual_weight", Double.parseDouble(

row.get("weight_pounds").toString()));
prediction.set("predicted_weight", estimate);

c.output(prediction);

The final step is to write the results back to BigQuery. Earlier in
the class, we defined the schema to use when writing records back
to BigQuery.

List<TableFieldSchema> fields = new ArrayList<>();
fields.add(new TableFieldSchema()

.setName("actual_weight").setType("FLOAT64"));
fields.add(new TableFieldSchema()

.setName("predicted_weight").setType("FLOAT64"));



112 CHAPTER 7. PRODUCTIZING MODELS

Figure 7.3: Autoscaling the Model Prediction Task.

TableSchema schema=new TableSchema().setFields(fields);

.apply(BigQueryIO.writeTableRows()
.to(String.format("%s:%s.%s", proj, dataset, table))
.withCreateDisposition(Write.CreateDisposition
.CREATE_IF_NEEDED).withSchema(schema));

pipeline.run();

We now have a pipeline defined that we can run to create predic-
tions for the entire data set. The full code listing for this class
is available online2. Running this class spins up a Dataflow job
that generates the DAG shown above, and will provision a number
of GCE instances to complete the job. Here’s an example of the
autoscaling used to run this pipeline:

When the job completes, the output is a new table in our BigQuery
project that stores the predicted and actual weights for all of the
records in the natality data set. If we want to run a new model, we
simply need to point to a new PMML file in the data flow job. All
of the files needed to run the offline analysis and data flow project
are available on Github.

2https://github.com/bgweber/StartupDataScience/tree/master/
Productizing

https://github.com/bgweber/StartupDataScience/tree/master/Productizing
https://github.com/bgweber/StartupDataScience/tree/master/Productizing


7.2. BATCH DEPLOYMENTS 113

Figure 7.4: Components in the Datastore Batch Deployment.

7.2.3 DataFlow — DataStore

Usually the goal of deploying a model is making the results avail-
able to an endpoint, so that they can be used by an application.
The past two approaches write the results to BigQuery, which isn’t
the best place to store data that needs to be used transactionally.
Instead of writing the results to BigQuery, the data pipeline dis-
cussed in this section writes the results to Datastore, which can be
used directly by a web service or application.

The pipeline for performing this task reuses the first two parts of the
previous pipeline, which reads records from BigQuery and creates
TableRow objects with model predictions. I’ve added two steps to
the pipeline, which translate the TableRow objects to Datastore
entities and write the results to Datastore:

.apply("To DS", ParDo.of(new DoFn<TableRow, Entity>() {

@ProcessElement
public void processElement(ProcessContext c) {

TableRow row = c.element();

// Create a lookup key for the record
String keyName = row.get("recordID").toString();
Key.Builder keyBuilder = Key.newBuilder();
Key.PathElement.Builder path = Key.PathElement.
newBuilder().setKind("Profile").setName(keyName);
keyBuilder.addPath(path);
Key key = keyBuilder.build();



114 CHAPTER 7. PRODUCTIZING MODELS

// set the experiment group
String expGroup = Double.parseDouble(

row.get("predicted_weight")
.toString()) >= 8 ? "Control" : "Treatment";

Value value = Value.newBuilder().
setStringValue(expGroup).build();

// create an entity to save to Datastore
Entity.Builder builder = Entity

.newBuilder().setKey(key);
builder.putProperties("Experiment", value);
c.output(builder.build());

}
}))
.apply(DatastoreIO.v1().write().withProjectId(proj));

Datastore is a NoSQL database that can be used directly by ap-
plications. To create entities for entry into Datastore, you need to
create a key. In this example, I used a recordID which is a unique
identifier generated for the birth record using the row_number()
function in BigQuery. The key is used to store data about a pro-
file, that can be retrieved using this key as a lookup. The second
step in this operation is assigning the record to a control or treat-
ment group, based on the predicted birth weight. This type of
approach could be useful for a mobile game, where users with a
high likelihood of making a purchase can be placed into an exper-
iment group that provides a nudge to make a purchase. The last
part of this snippet builds the entity object and then passes the
results to Datastore.

The resulting entities stored in Datastore can be used in client
applications or web services. The Java code snippet below shows
how to retrieve a value from Datastore. For example, a web service
could be used to check for offers to provide to a user at login, based
on the output of a predictive model.

public static void main(String[] args) {
Datastore datastore = DatastoreOptions

.getDefaultInstance().getService();
KeyFactory keyFactory = datastore

.newKeyFactory().setKind("Profile");



7.3. LIVE DEPLOYMENTS 115

// get a user profile
Entity profile = datastore.get(

keyFactory.newKey("User101"));
System.out.println(profile.getString("Experiment"));

}

7.3 Live Deployments

The approaches we’ve covered so far have significant latency, and
are not useful for creating real-time predictions, such as recom-
mending new content for a user based on their current session ac-
tivity. To build predictions in near real-time, we’ll need to use
different types of model deployments.

7.3.1 Web Service

One of the ways that you can provide real-time predictions for a
model is by setting up a web service that calculates the output.
Since we already discussed Jetty in the chapter on tracking data,
we’ll reuse it here to accomplish this task. In order for this approach
to work, you need to specify all of the model inputs as part of
the web request. Alternatively, you could retrieve values from a
system like Datastore. An example of using Jetty and JPMML to
implement a real-time model service is shown below:

public void handle(...) throws IOException{

// load the PMML model
final ModelEvaluator<RegressionModel> evaluator;
try {

evaluator = new RegressionModelEvaluator(
PMMLUtil.unmarshal(Resources.getResource(
"natality.pmml").openStream()));

}
catch (Exception e) {

throw new RuntimeException(e);
}



116 CHAPTER 7. PRODUCTIZING MODELS

// create a map of inputs for the pmml model
HashMap<FieldName, Double> inputs = new HashMap<>();
for (String attribute : modelFeatures) {

String value = baseRequest.getParameter(attribute);
inputs.put(FieldName.create(attribute),

Double.parseDouble(value));
}

// output the estimate
Double estimate =(Double)evaluator.evaluate(inputs)

.get(FieldName.create("weight_pounds"));
response.setStatus(HttpServletResponse.SC_OK);
response.getWriter().println(

"Prediction: " + estimate);
baseRequest.setHandled(true);

}

The code processes a message request, which contains parameters
with the values to use as model inputs. The snippet first loads the
PMML specification, creates an input map of features using the
web request parameters, applies the evaluator to get a predicted
value, and writes the result as an output. The modelFeatures array
contains the list of features specified in the PMML file. A request
to the service can be made as follows:

http://localhost:8080/&year=2000&plurality=1
&apgar_5min=0&mother_age=30&father_age=28
&gestation_weeks=40&ever_born=1&married=1

The result of entering this URL in your browser is a web page
which lists the predicted weight of 7.547 lbs. In practice, you’d
probably want to use a message encoding, such as JSON, rather
than passing raw parameters. This approach is simple and has
relatively low latency, but does require managing services. Scaling
up is easy, because each model application can be performed in
isolation, and no state is updated after providing a prediction.



7.3. LIVE DEPLOYMENTS 117

Figure 7.5: Components in the PubSub Live Model Deployment.

7.3.2 DataFlow - PubSub

It’s also possible to use Dataflow in a streaming mode to provide
live predictions. We used streaming Dataflow in the chapter on
data pipelines in order to stream events to BigQuery and a down-
stream PubSub topic. We can use a similar approach for model pre-
dictions, using PubSub as a source and a destination for a DataFlow
job. The Java code below shows how to set up a data pipeline that
consumes messages from a PubSub topic, applies a model predic-
tion, and passing the result as a message to an output PubSub
topic. The code snippet excludes the process of loading the PMML
file, which we already covered earlier in this chapter.

// Read messages from PubSub
PCollection<PubsubMessage> events = pipeline.apply(

PubsubIO.readMessages().fromTopic(inboundTopic));

// create a DoFn for applying the PMML model
events.apply("To Predictions", ParDo.of(

new DoFn<PubsubMessage, PubsubMessage>() {

@ProcessElement
public void processElement(ProcessContext c) {

PubsubMessage row = c.element();
// create a map of inputs for the pmml model
HashMap<FieldName, Double> inputs = new HashMap<>();
for (String key : row.getAttributeMap().keySet()) {
if (!key.equals("weight_pounds")) {
inputs.put(FieldName.create(key),

Double.parseDouble(row.getAttribute(key)));



118 CHAPTER 7. PRODUCTIZING MODELS

}
}

// get the estimate
Double estimate = (Double)evaluator.evaluate(inputs)

.get(FieldName.create("weight_pounds"));

// create a message with the prediction
String message = "Prediction:" + estimate;
PubsubMessage msg = new PubsubMessage(

message.getBytes(), new HashMap());
c.output(msg);

}}
.apply(PubsubIO.writeMessages().to(outboundTopic));

The code reads a message from an incoming topic and then parses
the different attributes from the message to use as feature inputs for
the model. The result is saved in a new message that is passed to an
outbound topic. Since the Dataflow job is set to run in streaming
mode, the pipeline will process the messages in near real-time as
they are received. The full code listing for this pipeline is available
on Github3.

In practice, PubSub may have too much latency for this approach
to be useful for directly handling web requests in an application.
This type of approach is useful when a prediction needs to be passed
to other components in a system. For example, it could be used to
implement a user retention system, where mobile game users with
a high churn likelihood are sent targeted emails.

7.3.3 Custom Engineering

Other approaches that are viable for providing live model deploy-
ments are Spark streaming, AWS Lambda, and Kinesis analytics.

Sometimes it’s not possible for a data science team to build data
products directly, because the system that needs to apply the model
is owned by a different engineering team. For example, Electronic
Arts used predictive models to improve matchmaking balance, and

3https://github.com/bgweber/StartupDataScience/tree/master/
Productizing

https://github.com/bgweber/StartupDataScience/tree/master/Productizing
https://github.com/bgweber/StartupDataScience/tree/master/Productizing


7.4. CONCLUSION 119

the team that built the model likely did not have direct access
to the game servers executing the model. In a scenario like this,
it’s necessary to have a model specification that can be passed
between the two teams. While PMML is an option here, custom
model specifications and encodings are common in industry.

I’ve also seen this process breakdown in the past, when a data
science team needs to work with a remote engineering team. If
a model needs to be translated, say from a Python notebook to
Go code, it’s possible for mistakes to occur during translation, the
process can be slow, and it may not be possible to make model
changes once deployed.

7.4 Conclusion

In order to provide value to a startup, data scientists should be ca-
pable of building data products that enable new features. This can
be done in combination with an engineering team, or be a respon-
sibility that lives solely with data science. My recommendation
for startups is to use serverless technologies when building data
products in order to reduce operational costs, and enable quicker
product iteration.

This chapter presented different approaches for productizing mod-
els, ranging from encoding logic directly in a SQL query to building
a web service to using different output components in a Dataflow
task. The result of productizing a model is that predictions can
now be used in products to build new features.

I also introduced the idea of segmenting users into different exper-
iment groups based on a predicted outcome. In the next chapter,
I’ll discussed different experimentation methodologies that can be
used including A/B testing and staged rollouts.



120 CHAPTER 7. PRODUCTIZING MODELS



Chapter 8

Experimentation

It’s important to be able to determine if changes made to a product
are beneficial. Experimentation is one of the methods that can be
used to perform this type of analysis. Ideally, you want to set
up experiments across randomized groups that are identical except
for a single change being made. This is the process used for A/B
testing, which can be used to draw strong statistical conclusions.
However, it’s not always possible to use this methodology, since it
may not be possible to control which users are part of a treatment
group for an experiment.

This was the case when I was part of the mobile team at Twitch
and we deployed a product update using the staged rollout feature
of Google Play. This chapter provides an overview of this case
study, and discusses two different approaches for drawing conclu-
sions when you do not have direct control of assigning experiment
groups. The second approach presented in this chapter, bootstrap-
ping, can be applied directly when performing A/B testing. Addi-
tional details on A/B testing at Twitch are available online1.

8.1 Staged Rollouts

Experimentation is one of the core functions of data science at star-
tups, and you should be able to work closely with product managers

1https://towardsdatascience.com/the-three-types-of-a-b-tests-ac544a5783f8

121

https://towardsdatascience.com/the-three-types-of-a-b-tests-ac544a5783f8


122 CHAPTER 8. EXPERIMENTATION

to test out new ideas and features. In the past, I’ve used in-house
tools to perform A/B experiments on the web and in mobile applica-
tions. However, I used a new approach for performing experiments
when using Google Play’s staged rollout feature.

Staged rollouts enable developers to release a new build to a sub-
set of the user base. Rather than implementing A/B logic within
the application itself, by writing ‘if’ blocks that maintain sepa-
rate treatment and control code paths, developers can build two
separate versions and deploy them simultaneously. This feature
is useful when making major changes to an application, such as
redesigning the UI. A drawback of staged rollouts is that we no
longer control the A/B splits for experiments. Common use cases
for staged rollouts include:

1. Testing the stability of a new release.
2. Measuring the usage of new features.
3. Measuring the impact of a new release on metrics.

Since only a subset of users get the new app version, this feature is
a great way to try out new ideas and rollback if any problems occur.
It also enables developers to measure the adoption of new features
in an Android application. Most companies do not use staged
rollouts for the third usee case, which is running experiments. .

We’d like to use staged rollouts to measure the impact of new re-
leases on an existing set of metrics, such as daily active users. This
feature is most useful when making major changes to an application,
where embedding the A/B logic for multiple application versions
within a single binary is complex.

Our initial approach was to use A/B testing with the staged rollout
feature. In this approach, the Google Play store selects a subset of
the users as eligible for the test app version. Users that are eligible
and update to the new version, whether automatic or manual, are
labeled as the test group. Users that do not update to the new
version are labeled as the control group, which may include eligible
users that did not install the update. Users that updated to the
new version after a fixed period of time, 1 week for our experiment,
were not included in the experiment because they overlapped.

Google Play uses a randomized approach to select the different
experiment groups, and we can measure key metrics across these
groups. However, we found biases in the data which prevented us
from using our standard approaches for A/B testing.



8.1. STAGED ROLLOUTS 123

Figure 8.1: Daily Sessions for the different groups.

The chart above shows the mean daily sessions per active user for
our test and control groups from a staged rollout. We found that
users with the new app version were more active than other users
prior to the experiment, meaning that a key assumption of A/B
testing did not hold: randomized sampling should minimize bias
by equalizing all other factors.

Since this assumption did not hold true, we needed to use new
techniques in order to measure the performance of our experiments
and communicate results to our product managers. We want to be
able to answer the following questions:

1. Did the new release have a positive impact on our metrics?
2. Is the change significant?
3. How big is the change?

Typically, we compare the difference between the test and control
groups for a time period following the release of the experiment ver-
sion. To account for the biases in user groups with staged rollouts,
we measured key metrics for the experiment groups before and af-
ter the new release, and compared the pre-experiment differences
between these groups. We use two approaches for this analysis:

• Time-Series Analysis
• Difference-in-Differences Estimation

We use the first approach to estimate absolute changes in key met-
rics using aggregate-level data and the second approach to perform



124 CHAPTER 8. EXPERIMENTATION

Figure 8.2: Adoption rate of APKs in the experiment.

significance testing on a collection of metrics using user-level data.
Both approaches are used to account for biases in the way that
staged rollouts sample users.

8.1.1 Staged Rollout Biases

One of the issues to be aware of when using staged rollouts on
Google Play is that it may take several days for users to update to
the new binary release (APK). We used a 10% sample rate for our
test build, and it took about 2 weeks for users to converge to this
value. The chart above shows the adoption rate of the new APK,
where adoption rate is defined as the number of users that updated
over the total number of active users.

We found that including new users results in a faster adoption
rate, but excluded new users in our analysis. The time-series and
difference-in-differences methods both rely on data being collected
for each user prior to the launch of the experiment, and new users
have no prior data. For the experiment detailed later in this chap-
ter, we only included users that updated within 1 week which re-
sulted in an adoption rate of 8.3%.

In order to try to explain the biases in the data, we explored a
variety of variables that may be responsible. The following vari-
ables where not significant in determining which groups users were
assigned to: country and device model.



8.1. STAGED ROLLOUTS 125

Figure 8.3: Prior updates for the experiment groups.

The variables that did show biases in the groups were the start-
ing month for the user, and the number of prior updates. A bias
towards users that have upgraded more in the past was not surpris-
ing, because users need to update in order to be included in the
test group.

8.1.2 Time Series Analysis

One of the metrics we measured for our staged rollout experiment
was the average number of sessions per active user. To estimate the
absolute change in this metric between the test and control group
we used the CausalImpact R package, which performs Bayesian
time-series modeling. This approach estimates the value of the test
group’s time series if no intervention occurred, and uses this esti-
mation to provide a prediction of the relative and absolute changes
in metrics. A key assumption of this approach is that the control
group is not impacted by any changes made.

The chart below shows the time series for our test and control
groups. The solid line is the average sessions metric for the test
group, which was larger than the control group prior to the experi-
ment. We used a two-week period before and after the release date
for measuring key metrics.



126 CHAPTER 8. EXPERIMENTATION

Figure 8.4: Daily Sessions for the experiment groups.

library(CausalImpact)
data <- read.csv(file = "DailySessions.csv")

# Create a DataFrame and plot the input data
ts <- cbind(data$test, data$control)
matplot(ts, type = "l")

# Use two week prior and post periods and plot results
pre.period <- c(1, 14)
post.period <- c(15, 30)
impact <- CausalImpact(ts, pre.period, post.period)

# Plot the results and explain the outcome
plot(impact, c("original", "pointwise"))
summary(impact, "report")

We used the CausalImpact R package to estimate the impact of
the new app version on our session metric. The code snippet above
shows how to use this package to build an estimate for the test
group. For this experiment, the relative increase was +4% daily



8.1. STAGED ROLLOUTS 127

Figure 8.5: Generating visualizations with CausalImpact.

sessions per active user, with a 95% confidence interval of [+2%,
+5%].

This approach is useful when only aggregate data is available. To
test multiple variables independent of a time component, we use
bootstrapping.

8.1.3 Difference-in-Differences Estimation

We usually tracked a collection of metrics when performing experi-
ments at Twitch. Bootstrapping is a robust resampling process that
enables our teams to measure changes in metrics with confidence
intervals. For our staged rollout experiment, we used bootstrap-
ping to measure the difference-in-differences between our test and
control groups.



128 CHAPTER 8. EXPERIMENTATION

library(boot)
data <- read.csv("UserSessions.csv")

# Function for computing the difference of differences
run_DiD <- function(data, indices){

d <- data[indices,]
new <- mean(d$postval[d$group=='Test'])/

mean(d$priorval[d$group=='Test'])
old <-mean(d$postval[d$expgroup=='Control'])/

mean(d$priorval[d$expgroup=='Control'])
return((new - old)/old * 100.0)

}

# perform the bootstrapping and output the results
boot_est <- boot(data, run_DiD, R=1000,

parallel="multicore", ncpus = 8)
quantile(boot_est$t, c(0.025, 0.975))
plot(density(boot_est$t),xlab="% Increase vs. Control")

For each user, we measured the total number of sessions for the 14
days prior to the test version release and the 14 days following the
release date. We then performed thousands of iterations, where
we computed the sampled mean values for the differences between
prior and post values and computed the percent increase between
the test and control means. We used the boot R package to perform
these calculations, as shown above. The model estimated a +5.4%
increase in total sessions per user, with a 95% confidence interval
of [+3.9%, +6.9%].

8.2 Conclusion

We found biases in the data when using Google’s staged rollout fea-
ture and applied new methods for running experiments with this
feature. Both of the approaches used found that the new app re-
lease resulted in a significant increase in sessions per user. The
time-series method is useful for cases where only aggregate-level
data is available, and the bootstrapping approach is useful for test-
ing multiple values independent of a time component. The rollout
feature provides a mechanism for testing new builds, but doesn’t
work with standard A/B testing approaches. For further reading,



8.2. CONCLUSION 129

Figure 8.6: Bootstrapping results for session counts.

explore the following papers on Causal Impact2 and A/B Testing
at Facebook3.

The case study presented in this chapter shows the importance
of moving beyond standardized tools for performing experiments.
While using vendor solutions is a great way to get started with
running experiments, it’s useful to be able to manually perform the
experimentation analysis if a situation arises that the tool does not
cover. It’s important to question your assumptions when running
experiments and to not draw too strong of conclusions from a single
test.

2https://ai.google/research/pubs/pub41854
3https://www.kellogg.northwestern.edu/faculty/gordon_b/files/kellogg_

fb_whitepaper.pdf

https://ai.google/research/pubs/pub41854
https://www.kellogg.northwestern.edu/faculty/gordon_b/files/kellogg_fb_whitepaper.pdf
https://www.kellogg.northwestern.edu/faculty/gordon_b/files/kellogg_fb_whitepaper.pdf


130 CHAPTER 8. EXPERIMENTATION



Chapter 9

Recommendation
Systems

A data scientist at a startup is usually responsible for prototyping
new data products, such as a recommendation system. When I was
at Twitch, many of the products were powered by recommendation
systems including VOD recommendations, Clips recommendations,
and similar channels. Before productizing a recommendation sys-
tem at Twitch, the science team first prototyped a recommenda-
tion system to see if the output was useful for one of our products.
Prototyping a recommendation can be low cost, and this chapter
provides examples of building a recommendation system in four
different programming languages.

Each of the examples uses a different library to prototype a recom-
mendation system using collaborative filtering. An introduction to
the collaborative filtering approach used on Amazon.com is avail-
able in this paper1, and a good overview of the different algorithms
and similarity measures used in recommendations systems is cov-
ered in Mahout in Action (Owen et al., 2011). I also provide an
overview of recommendation systems in my GDC Talk2 on the
marketplace in EverQuest Landmark. User-based collaborative fil-
tering is used in all of the examples below, except for the Scala
example which uses alternating least squares (ALS).

1https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
2http://www.gdcvault.com/play/1021850

131

https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.gdcvault.com/play/1021850


132 CHAPTER 9. RECOMMENDATION SYSTEMS

Figure 9.1: Amazon.com recommendations for “Mahout in Action”.

The examples load a data set and then recommend five items for
the user with ID 101. The synthetic data set used in these examples
is a collection of user purchases of games, where each line includes
a user ID and a game ID. The example data set and source code
for all examples is available on GitHub3.

9.1 R - Recommender Lab

If R is your programming language of choice, the recommenderlab
package makes it easy to prototype different recommendation sys-
tems. The package is available on the CRAN repository and can be
installed using the standard install.packages function. Once loaded,
the package provides a Recommender function which takes a data
matrix and recommendation method as inputs. In this script, the
data matrix is loaded from a CSV file, and the method used is user-
based collaborative filtering. The predict function is then used to
retrieve five items for user 101.

install.packages("recommenderlab")
library(recommenderlab)
matrix <- as(read.csv("Games.csv"),"realRatingMatrix")

3https://github.com/bgweber/Twitch/tree/master/Recommendations

https://github.com/bgweber/Twitch/tree/master/Recommendations


9.2. JAVA - APACHE MAHOUT 133

model <-Recommender(matrix, method = "UBCF")
games <- predict(model, matrix["101",], n=5)
as(games, "list")

9.2 Java - Apache Mahout

Mahout is a machine learning library implemented in Java that
provides a variety of collaborative filtering algorithms. Mahout
implements user-based collaborative filtering with a UserNeighbor-
hood class that specifies how similar a user needs to be in order to
provide feedback for item recommendations. This example uses the
Tanimoto similarity measure to find the similarity between users,
which computes the ratio of the number of shared games (intersec-
tion) over the total number of games owned by the players (union).
This CSV file is used as input to a data model which is then passed
to the recommender object. Once a recommender object has been
instantiated, the recommend method can be used to create a list
of game recommendations for a specific user.

import org.apache.mahout.cf.taste.*;
DataModel model = new

FileDataModel(new File("Games.csv"));
UserSimilarity similarity = new
TanimotoCoefficientSimilarity(model);

UserNeighborhood neighborhood =
new ThresholdUserNeighborhood(0.1,similarity,model);

UserBasedRecommender recommender =
new GenericUserBasedRecommender(
model, neighborhood, similarity);

List recommendations = recommender.recommend(101, 5);
System.out.println(recommendations);

9.3 Scala - MLlib

One of the tools becoming more popular for building recommen-
dation systems is Apache Spark, which provides a built-in library



134 CHAPTER 9. RECOMMENDATION SYSTEMS

called MLlib that includes a collection of machine learning algo-
rithms. This example first runs a query to retrieve game purchases
in a UserID, GameID tuple format, and then transforms the data
frame into a collection of ratings that can be used by the ALS
model. Implicit data feedback is being used in this example, which
is why the trainImplicit method is used instead of the train method.
The input parameters to the train method are the game ratings, the
number of latent features to use, the number of iterations to per-
form for matrix factorization, the lambda parameter which is used
for regularization, and the alpha parameter which specifies how
implicit ratings are measured. Once the model is trained, the rec-
ommendProducts method can be used to retrieve a recommended
list of games for a user.

import org.apache.spark.mllib.recommendation._
val games = sqlContext.read

.format("com.databricks.spark.csv")

.option("header", "false")

.option("inferSchema", "true")

.load("/Users/bgweber/spark/Games.csv")

val ratings = games.rdd.map(row =>
Rating(row.getInt(0), row.getInt(1), 1)

)

val rank = 10
val model = ALS.trainImplicit(ratings,rank 5,0.01,1)
val recommendations = model.recommendProducts(101, 5)
recommendations.foreach(println)

9.4 SQL - Spark SQL

In situations where pulling data to a machine running Spark or R is
too slow or expensive, you can use SQL to prototype a recommen-
dation system. This approach may be computationally expensive
to use, but can be useful for spot-checking a few results. The exam-
ple below uses Spark SQL, because I wanted to make the example
reproducible for the provided data set. The first part of the code
loads the table from a CSV file and registers the loaded data frame



9.4. SQL - SPARK SQL 135

as a temporary table. The second part of the example includes SQL
CTAs that prepare the data and then scores games for a single user.
The inner query computes the Tanimoto coefficient between users
by finding the ratio in overlapping games divided by total number
of games purchased, and the outer query returns an overall score
for each retrieved game.

val games = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "false")
.option("inferSchema", "true")
.load("/Users/bgweber/spark/Games.csv")

games.registerTempTable("games")
val result = sqlContext.sql("""
with users as (

select _c0 as User_ID, sum(1) as NumGames
from games
group by 1

)
, purchases as (

select _c0 as User_ID, _c1 as Game_ID, NumGames
from games g
join users u

on g._c0 = u.User_ID
)
select u.User_ID, v.Game_ID, sum(Tanimoto) GameWeight
from (

select u.User_ID, v.User_ID as Other_User_ID,
count(u.Game_ID)/(u.NumGames + v.NumGames -

count(u.Game_ID)) as Tanimoto
from purchases u
Join purchases v

on u.Game_ID = v.Game_ID
where u.User_ID = 101
group by 1, 2, u.NumGames, v.NumGames

) u
Join purchases v

on Other_User_ID = v.User_ID
group by u.User_ID, v.Game_ID
order by GameWeight desc



136 CHAPTER 9. RECOMMENDATION SYSTEMS

""")
result.show(5)

9.5 Conclusion

These scripts have provided examples for how to retrieve game sug-
gestions for a specific user. One of the ways to evaluate the quality
of a recommender is to use a qualitative approach, in which the out-
put of the recommender is manually examined for a small group of
users. Another approach is to use the built-in evaluation metrics
included in the different libraries. For example, recommenderlab
and MLlib provide functions for computing ROC curves which can
be used to evaluate different system configurations. When eval-
uating a recommender, it is also a good practice to compare the
performance of the recommendation system to other handcrafted
approaches, such as a top sellers list.

It’s important to be familiar with a wide variety of tools as a data
scientist at a startup, because you may need to prototype a data
product outside of your preferred programming environment. This
chapter was motivated based on a case study at Twitch and pro-
vides an overview of four different approaches that can be used to
start prototyping a recommender system.



Chapter 10

Deep Learning

This chapter is a brief introduction to using the Keras deep learning
framework to solve classic (shallow) machine learning problems. It
presents a case study from my experience at Windfall Data, where
I worked on a model to predict housing prices for hundreds of
millions of properties in the US.

I recently started reading “Deep Learning with R” (Chollet and
Allaire, 2018), and I’ve been really impressed with the support that
R has for digging into deep learning. One of the use cases presented
in the book is predicting prices for homes in Boston, which is an
interesting problem because homes can have such wide variations
in values. This is a machine learning problem that is probably best
suited for classical approaches, such as XGBoost, because the data
set is structured rather than perceptual data. However, it’s also
a data set where deep learning provides a really useful capability,
which is the ease of writing new loss functions that may improve
the performance of predictive models. The goal of this chapter is to
show how deep learning can potentially be used to improve shallow
learning problems by using custom loss functions.

One of the problems that I’ve encountered a few times when work-
ing with financial data is that often you need to build predictive
models where the output can have a wide range of values, across
different orders of magnitude. For example, this can happen when
predicting housing prices, where some homes are valued at $100k
and others are valued at $10M. If you throw standard machine

137



138 CHAPTER 10. DEEP LEARNING

learning approaches at these problems, such as linear regression or
random forests, often the model will overfit the samples with the
highest values in order to reduce metrics such as mean absolute er-
ror. However, what you may actually want is to treat the samples
with similar weighting, and to use an error metric such as relative
error that reduces the importance of fitting the samples with the
largest values.

# Standard approach to linear regression
fit <- lm(y ~ x1 + x2 + x3 + ... + x9, data=df)

# Linear regression with a log-log transformation
fit <- nls(log10(y) ~ log(x1*b1 + x2*b2 + ... + x9*b9)

,data = df, start = list(b1=1, b2=1, ... , b9 = 1))

You can actually do this explicitly in R, using packages such as
nonlinear least squares (nls). The code sample above shows how to
build a linear regression model using the built-in optimizer, which
will overweight samples with large label values, and the nls ap-
proach which shows how to perform a log transformation on both
the predicted values and labels, which will give the samples rela-
tively equal weight. The problem with the second approach is that
you have to explicitly state how to use the features in the model,
creating a feature engineering problem. An additional problem
with this approach is that it cannot be applied directly to other
algorithms, such as random forests, without writing your own like-
lihood function and optimizer. This is for a specific scenario where
you want to have the error term outside of the log transform, not
a scenario where you can simply apply a log transformation to the
label and all input variables.

Deep learning provides an elegant solution to handling these types
of problems, where instead of writing a custom likelihood function
and optimizer, you can explore different built-in and custom loss
functions that can be used with the different optimizers provided.
This chapter will show how to write custom loss functions in R
when using Keras, and show how using different approaches can be
beneficial for different types of data sets.

The image of error functions is a preview of what I’ll cover in
this chapter. It shows the training history of four different Keras
models trained on the Boston housing prices data set. Each of the



10.1. IMPROVING SHALLOW PROBLEMS 139

Figure 10.1: Performance of the 4 loss functions on the original
housing prices data set. All models used MAE for the performance
metric.

models use different loss functions, but are evaluated on the same
performance metric, mean absolute error. For the original data set,
the custom loss functions do not improve the performance of the
model, but on a modified data set, the results are more promising.

10.1 Improving Shallow Problems

One of the great features of deep learning is that it can be applied
to both deep problems with perceptual data, such as audio and
video, and shallow problems with structured data. For shallow
learning (classical ML) problems, you can often see improvements
over shallow approaches, such as XGBoost, by using a custom loss
function that provides a useful singal.



140 CHAPTER 10. DEEP LEARNING

Figure 10.2: The Boston data set with original prices and the trans-
formed prices.

However, not all shallow problems can benefit from deep learning.
I’ve found custom loss functions to be useful when building regres-
sion models that need to create predictions for data with different
orders of magnitude. For example, predicting housing prices in an
area where the values can range significantly. To show how this
works in practice, we’ll use the Boston housing data set provided
by Keras1.

This data set includes housing prices for a suburb in Boston during
the 1970s. Each record has 13 attributes that describe properties
of the home, and there are 404 records in the training data set and
102 records in the test data set. In R, the dataset can be loaded
as follows: dataset_boston_housing(). The labels in the data set
represent the prices of the homes, in thousands of dollars. The
prices range from $5k to $50k, and the distribution of prices is
shown in the histograming on the left. The original data set has
values with similar orders of magnitude, so custom loss functions
may not be useful for fitting this data. The histogram on the right
shows a transformation of the labels which may benefit from using
a custom loss.

To transform the data, I converted the labels back into absolute
prices, squared the result, and then divided by a large factor. This

1https://keras.io/datasets/#boston-housing-price-regression-dataset

https://keras.io/datasets/#boston-housing-price-regression-dataset


10.2. LOSS FUNCTIONS IN KERAS 141

results in a data set where the difference between the highest and
lowest prices is 100x instead of 10x. We now have a prediction
problem that can benefit from the use of a custom loss function.
The R code to generate these plots is shown below.

x <- (train_targets*1000)^2/2500000
hist(train_targets, main = "Original Prices")
hist(x, main = "Transformed Prices")

10.2 Loss Functions in Keras

Keras includes a number of useful loss function that be
used to train deep learning models. Approaches such as
mean_absolute_error() work well for data sets where values are
somewhat equal orders of magnitude. There’s also functions such
as mean_squared_logarithmic_error() which may be a better
fit for the transformed housing data. Here are some of the loss
functions provided by the R interface to Keras:

keras::loss_mean_absolute_error()
keras::loss_mean_absolute_percentage_error()
keras::loss_mean_squared_error()
keras::loss_mean_squared_logarithmic_error()

The functions in losses.R refer to Python functions, and to really
understand how these work we’ll need to jump into the Python
losses code. The first loss function we’ll explore is the mean squared
error, defined below. This function computes the difference be-
tween predicted and actual values, squares the result (which makes
all of the values positive), and then calculates the mean value. Note
that the function uses backend operations that operate on tensor
objects rather than Python primitives. This same approach will be
used when defining custom loss function in R

def mean_squared_error(y_true, y_pred):
return K.mean(K.square(y_pred - y_true), axis=-1)



142 CHAPTER 10. DEEP LEARNING

The next built-in loss function we’ll explore calculates the error
based on the difference between the natural log of the predicted and
target values. It is defined here2 and shown below. The function
uses the clip operation to make sure that negative values are not
passed to the log function, and adding 1 to the clip result makes
sure that all log transformed inputs will have non-negative results.
This function is similar to the one we will define in R.

def mean_squared_logarithmic_error(y_true, y_pred):
first = K.log(K.clip(y_pred,K.epsilon(),None) + 1)
second = K.log(K.clip(y_true,K.epsilon(),None) + 1)
return K.mean(K.square(first - second), axis=-1)

The two custom loss functions we’ll explore are defined in the R
code segment below. The first function, mean log absolute error
(MLAE), computes the difference between the log transform of the
predicted and actual values, and then averages the result. Un-
like the built-in function above, this approach does not square the
errors. One other difference from the log function above is that
this function is applying an explicit scaling factor to the data, to
transform the housing prices back to their original values (5,000 to
50,0000) rather than (5, 50). This is useful, because it reduces the
impact of adding +1 to the predicted and actual values.

# Mean Log Absolute Error
MLAE <- function( y_true, y_pred ) {

K <- backend()
K$mean( K$abs( K$log( K$relu(y_true *1000 ) + 1 ) -

K$log( K$relu(y_pred*1000 ) + 1)))
}
# Mean Squared Log Absolute Error
MSLAE <- function( y_true, y_pred ) {

K <- backend()
K$mean(K$pow(K$abs(K$log(K$relu(y_true*1000) + 1 ) -

K$log( K$relu(y_pred*1000 ) + 1)), 2))
}

Like the Python functions, the custom loss functions for R need
to operate on tensor objects rather than R primitives. In order

2https://github.com/keras-team/keras/blob/master/keras/losses.py#L28

https://github.com/keras-team/keras/blob/master/keras/losses.py#L28


10.3. EVALUATING LOSS FUNCTIONS 143

to perform these operations, you need to get a reference to the
backend using backend(). In my system configuration, this returns
a reference to tensorflow.

The second function computes the square of the log error, and is
similar to the built in function. The main difference is that I’m
using the relu operation rather than the clip operation, and I’m
scaling the values, which is specific to the housing data set.

10.3 Evaluating Loss Functions

We now have four different loss functions that we want to evaluate
the performance of on the original and transformed housing data
sets. This section will walk through setting up Keras, loading the
data, compiling a model, fitting the model, and evaluating perfor-
mance. The complete code listing for this section is available on
github3.

First we need to set up our environment for deep learning. This
can be done with the Keras package and the install_keras function.

# Installation
devtools::install_github("rstudio/keras")
library(keras)
install_keras(method = "conda")

Once installed, we’ll load the data set and apply our transformation
to skew housing prices. The last two operations can be commented
out to use the original housing prices.

# load the data set
library(keras)
data <- dataset_boston_housing()
c(c(train_data,train_targets),

c(test_data,test_targets)) %<-% data

# transform the training and test labels

3https://github.com/bgweber/StartupDataScience/blob/master/
DeepLearning/LossFunctions.R

https://github.com/bgweber/StartupDataScience/blob/master/DeepLearning/LossFunctions.R
https://github.com/bgweber/StartupDataScience/blob/master/DeepLearning/LossFunctions.R


144 CHAPTER 10. DEEP LEARNING

train_targets <- (train_targets*1000)^2/2500000
test_targets <- (test_targets*1000)^2/2500000

Next, we’ll create a Keras model for predicting housing prices.
I’ve used the network structure from the sample problem in
“Deep Learning with R”. The network includes two layers of
fully-connected relu activated neurons, and an output layer with
no transformation.

# The model as specified in "Deep Learning with R"
model <- keras_model_sequential() %>%
layer_dense(units = 64, activation = "relu",

input_shape = dim(train_data)[[2]]) %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1)

To compile the model, we’ll need to specify an optimizer, loss func-
tion, and a metric. We’ll use the same metric and optimizer for all
of the different loss functions. The code below defines a list of loss
functions, and for the first iteration the model uses mean squared
error.

# Compile the model, and select a loss function
losses <- c(keras::loss_mean_squared_error,

loss_mean_squared_logarithmic_error, MLAE, MSLAE)
model %>% compile(

optimizer = "rmsprop",
loss = losses[1],
metrics = c("mae")

)

The last step is to fit the model and then evaluate the performance.
I used 100 epochs with a batch size of 5, and a 20% validation split.
After training the model on the training data set, the performance
of the model is evaluated on the mean absolute error on the test
data set.

# Train the model with validation
model %>% fit(



10.3. EVALUATING LOSS FUNCTIONS 145

Figure 10.3: Performance of the Loss Functions on the Housing
Price Data Sets.

train_data,
train_targets,
epochs = 100,
batch_size = 5,
verbose = 1,
validation_split = 0.2

)

# Calculate the mean absolute error
results <- model %>% evaluate(test_data,

test_targets, verbose = 0)
results$mean_absolute_error

I trained four different models with the different loss functions, and
applied this approach to both the original housing prices and the
transformed housing prices. The results for all of these different
combinations are shown above.

On the original data set, applying a log transformation in the loss
function actually increased the error of the model. This isn’t really
surprising given that the data is somewhat normally distributed
and within a single order of magnitude. For the transformed data
set, the squared log error approach outperformed the mean squared
error loss function. This indicates that custom loss functions may
be worth exploring if your data set doesn’t work well with the
built-in loss functions.

The model training histories for the four different loss functions
on the transformed data set are shown below. Each model used
the same error metric (MAE), but a different loss function. One
surprising result was that the validation error was much higher for
all of the loss functions that applied a log transformation.



146 CHAPTER 10. DEEP LEARNING

Figure 10.4: Performance of the 4 loss functions on the transformed
housing prices data set. All models used MAE for the performance
metric.



10.4. CONCLUSION 147

10.4 Conclusion

Deep learning can be a useful tool for shallow learning problems,
because you can define custom loss functions that may substantially
improve the performance of your model. This won’t work for all
problems, but may be useful if you have a prediction problem that
doesn’t map well to the standard loss functions.

For most data science problems faced by a startup, deep learn-
ing is likely overkill, unless you are working with perceptual data.
It’s useful to evaluate deep learning in addition to other methods,
because it may perform better than classic approaches. However,
scaling deep learning is usually more work than scaling classific ap-
proaches such as XGBoost, and there’s also a loss of transparency
in understanding how the model works.



148 CHAPTER 10. DEEP LEARNING



Bibliography

Chollet, F. and Allaire, J. J. (2018). Deep Learning with R. Man-
ning Publications Co., Greenwich, CT, USA.

Owen, S., Anil, R., Dunning, T., and Friedman, E. (2011). Mahout
in Action. Manning Publications Co., Greenwich, CT, USA.

Xie, Y. (2018). bookdown: Authoring Books and Technical Docu-
ments with R Markdown. R package version 0.7.8.

149


	Introduction
	Why Data Science?
	Book Overview
	Tooling

	Tracking Data
	What to Record?
	Tracking Specs
	Client vs Server Tracking
	Sending Tracking Events
	Message Encoding
	Building a Tracking API
	Privacy
	Conclusion

	Data Pipelines
	Types of Data
	The Evolution of Data Pipelines
	A Scalable Pipeline
	Conclusion

	Business Intelligence
	KPIs
	Reporting with R
	ETLs
	Reporting Tools
	Conclusion

	Exploratory Data Analysis
	Summary Statistics
	Plotting
	Correlation Analysis
	Feature Importance
	Conclusion

	Predictive Modeling
	Types of Predictive Models
	Training a Classification Model
	Clustering
	Conclusion

	Productizing Models
	Building a Model Specification
	Batch Deployments
	Live Deployments
	Conclusion

	Experimentation
	Staged Rollouts
	Conclusion

	Recommendation Systems
	R - Recommender Lab
	Java - Apache Mahout
	Scala - MLlib
	SQL - Spark SQL
	Conclusion

	Deep Learning
	Improving Shallow Problems
	Loss Functions in Keras
	Evaluating Loss Functions
	Conclusion


