Learning and Modeling Player Behavior in Games

Ben G. Weber
bgweber@gmail.com
Big Data meets Game Design

- How can we use **big data** to enable **new types of playable experiences**?
Big Data

- Telemetry
- Replays
- Social Media
Research Questions

- What can an AI system learn from players?

- What can big data tell us about players?
Projects

- Madden NFL Mining
- EISBot
Madden NFL Mining

- Pilot study at Electronic Arts

 Goals

- Analyze data from *Madden NFL 11*
- Determine why players quit playing
- Identify potential changes for *Madden NFL 12*
Madden Mining Question

- How do modifications in the design impact player retention?
Current Approaches

- **User studies**
 - Survey human participants
 - Collect physiological data

- **A/B testing**
 - Deploy several game variations with single-variable test samples
Robust Unique Effect Analysis

- An algorithm that performs **regression** and analyzes **unique effects** to rank features

Algorithm overview

1. Build regression models for predicting retention
2. Perturb the inputs to the models
3. Compute the impact of individual features
Most Influential Features

The following features were identified as the **most influential** in predicting **player retention**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Correlation</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offense Play Diversity</td>
<td>(-)</td>
<td>55.4</td>
</tr>
<tr>
<td>Defense Play Diversity</td>
<td>(-)</td>
<td>34.2</td>
</tr>
<tr>
<td>Interceptions Caught</td>
<td>(+)</td>
<td>24.6</td>
</tr>
<tr>
<td>Online Franchise Wins</td>
<td>(+)</td>
<td>15.7</td>
</tr>
<tr>
<td>Running Play Ratio</td>
<td>(+)</td>
<td>10.1</td>
</tr>
<tr>
<td>Multiplayer Wins</td>
<td>(+)</td>
<td>9.3</td>
</tr>
</tbody>
</table>
Win Rate Influence on Player Retention

![Graph showing the relationship between win rate and player retention for different game modes: PlayNow, Ranked, Superstar, and Franchise. The graph plots the predicted number of games against the win rate on a linear scale for each mode.]
Design Recommendations

- Simplify playbooks
- Clearly present the controls
- Provide the correct challenge
Project Impact

OFFENSIVE GAMEPLAN

SITUATION - 3RD AND SHORT
3rd down, with less than 3 yards to go

Playbook:
TB - R.Morris

Pass Plays
- Quick Pass 18
- Standard Pass 96
- Shotgun Pass 67
- Play Action Pass 52

Run Plays
- Inside Handoff 33
- Outside Handoff 13
- Pitch 9
- Counter 9
Telemetry-Supported Game Design

- **Question:** Identify questions about the design
- **Record:** Determine which data needs to be recorded and deploy the game
- **Analyze:** Check if the collected data matches expectations
- **Refine:** Given the findings, analyze the design and formulate additional questions
EISBot

- An agent for the real-time strategy game **StarCraft: Brood War**

- **Goals**
 - Explore capabilities necessary for expert StarCraft gameplay
 - Investigate techniques for learning from replays

[Flash, Pro-gamer]
Why StarCraft?

- Many real-world properties
- Evolving meta-game
- Multi-scale
What competencies are necessary for StarCraft gameplay?

Which competencies can be learned from demonstrations?
StarCraft Gameplay

- Expand Tech Tree
- Attack Opponent
- Manage Economy
- Produce Units
Agent Overview

- Implemented in the **ABL** planning language

Architecture

- Extension of McCoy & Mateas’ (2008) integrated agent framework
- Partitions gameplay into distinct competencies
- Uses a blackboard for coordination
Multi-Scale Idioms

- Design patterns for enabling authoring of agents that perform multi-scale reasoning

Idioms
- Daemon behaviors
- Message passing
- Managers
- Unit subtasks
EISBot Managers

- Strategy Manager
 - Income Manager
 - Gather Resources
 - Production Manager
 - Construct Buildings
 - Tactics Manager
 - Attack Opponent
 - Recon Manager
 - Scout Opponent
Learning in EISBot

- Build-order prediction
- State estimation
- Strategy learning

Diagram:
- Replay
 - Training Process
 - Gameplay Model
Build-Order Prediction

- **Goals**
 - Identify opponent build orders
 - Predict when buildings will be constructed

Spawning Pool Timing

Factory Timing
Approach

- **Feature encoding**
 - Each player’s actions are encoded in a single vector
 - Vectors are labeled using a build-order rule set

- Features describe the game cycle when a unit or building type is first produced by a player

\[
f(x) = \begin{cases}
 t, & \text{time when } x \text{ is first produced by } P \\
 0, & x \text{ was not (yet) produced by } P
\end{cases}
\]
Build-Order Prediction Results

- **NNge**
- **Boosting**
- **Rule Set**
- **State Lattice**

Game Time (minutes) vs. Recall Precision
State Estimation

- **Goal**
 - Estimate enemy positions given prior observations

- **Particle Model**
 - Apply movement model
 - Remove visible particles
 - Reweight particles
Parameter Selection

- **Free parameters**
 - Trajectory weights
 - Decay rates

- State estimation is represented as an optimization problem
 - **Input:** parameter weights
 - **Output:** particle model error

- Replays are used to implement a particle model error function
State Estimation Results

![Graph showing State Estimation Results with various models: Null Model, Perfect Tracker, Default Model, Optimized Model. The x-axis represents Game Time (Minutes), and the y-axis represents Threat Prediction Error. The graph illustrates the performance of each model over the course of a game.](image-url)
Strategy Learning

- **Goals**
 - Learn build-orders from demonstration
 - Formulate goals based on examples

- **Trace Algorithm**
 - Converts replays to a trace representation
 - Formulates goals based on most similar situation
 - Utilizes retrieved goals for strategy selection and opponent modeling
Strategy Learning Results

Opponent modeling with a window size of 20

Prediction Error (RMSE) vs. Actions performed by player

- Null
- IB1
- Trace
- MultiTrace
Evaluation

- Ablation Study
- User Study
Project Contributions

- **Idioms** for authoring **multi-scale** agents
- Methods for **learning from replays**
Next Directions

- What is the future of learning from demonstration?

- What is the future of game analytics?
Learning from Demonstration

- **Mixed-initiative AI development**
 - How can we integrate learning from demonstration with other AI methods?

- **Stylized gameplay**
 - Can we develop game AI which emulates the style of a specific player or archetype?
Game Analytics

- **Data integration**
 - How can we integrate data harnessed from diverse data sources?

- **Continuous feedback**
 - How can analytics be utilized throughout the development cycle?
What is the Future of Games?

- Using **Big Data** to enable new types of **AI development** and gameplay

- Integrating **player feedback** in the game design process
Learning and Modeling Player Behavior

- Ben G. Weber
 - bgweber@gmail.com
 - @bgweber
 - http://bgweber.com