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About Me 

 Ben G. Weber 

 Senior Data Scientist  

 Electronic Arts 
 

 Experience  

 PhD in Computer Science, UCSC 

 Technical Analyst Intern, EA 

 User Research Analyst, Microsoft Studios 

 Ecommerce Analyst, Sony Online Entertainment  

 Director of BI & Analytics, Daybreak Games 
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Games & Services  
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Talk Overview 

 Game Analytics 

 Classification Algorithms 

 Strategy Prediction in StarCraft: Brood War  

 Membership Conversion in DC Universe Online  

 Regression Algorithms  

 Player Retention in Madden NFL   

 Recommendation Algorithms 

 Recommendation System in EverQuest Landmark 

 Data Science at EA 
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What is Game Analytics? 

 Using data to inform game design and improve player 
lifecycles 
 

 Gathering feedback from players, making changes, and 
measuring the impact 
 

 Example Applications  

 Tuning game difficulty  

 Balancing the game economy 

 Content recommendations  

 Computing the lifetime value of players  



expressiveintelligencestudio  UC Santa Cruz 

What Data Can We Analyze? 

 Game data  

 In-Game events 

 Commerce events  

 Operational metrics  

 User Data 

 Web sessions  

 Acquisition channel 

 3rd Party Data  

 Steam Spy 

 Platform Data  
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How can we analyze players? 

 

 Descriptive statistics and exploratory data analysis 

 

 Experimentation & Measurement 

 

 Segmentation  

 

 Forecasting  

 

 Predictive analytics  
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What teams use Analytics? 

 Design 

 Product Management 

 Marketing  

 Business Development  

 Strategy  

 Finance  

 Dev Ops  

 Community Management 
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Analytics for Design 

 Question: Identify questions about the 
current design 
 

 Record: Enumerate which data needs to be 
collected and deploy the game 
 

 Analyze: Determine if the recorded data 
matches expectations 
 

 Refine: Given the findings, analyze the design 
and formulate additional questions 
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Tools for Analytics 

 Storage   

 DBMS, Hadoop, Cloud Storage   
 

 Reporting  

 Excel, MicroStrategy, Tableau, D3 
 

 Analysis 

 SQL, R, Python, Scala  
 

 Model Building 

 R, Weka, MLlib  
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Applications of Analytics in Games 

 

 Dashboard Analytics (Metrics & KPIs)  

 Spatial Analytics (Visualization) 

 User Research Analytics  

 Market Research Analytics 

 Data Science 
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Dashboard Analytics 

 Dead Space 2 Data Cracker (Ben Medler, GDC 2011)  
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Spatial Analytics  

 Player movement in SWTOR (Georg Zoeller, GDC 2010) 
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User Research Analytics  

 My Heart on Halo, Ben Lewis-Evans 
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Market Research Analytics 

 Player Retention data scraped from Raptr.com  
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Recommended Reading (Gamasutra) 

 Intro to User Analytics  

 What to track and how to analyze data 

 Anders Drachen et al.  
 

 Game Analytics 101 

 What technologies to use? 

 Dmitri Williams  
 

 Indie Game Analytics 101 

 What metrics to track?  

 Dylan Jones 
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Machine Learning (ML) 

 Algorithms that learn from data and make inferences 
or predictions  
 

 Types of Problems  

 Classification:  

 Identifying the category of an instance 

 Prediction: label  

 Regression:  

 Estimating relationships between variables 

 Prediction: value 

 Clustering  

 Identifying similar groups of instances 
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The 3 Cultures of Machine Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jason Eisner (2015) 
http://cs.jhu.edu/~jason/tutorials/ml-simplex.html 
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Application to Game Analytics  

Forecasting 

Predictive  
Analytics 

A/B Testing 
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Applying ML to Games 

 

 How to represent the problem?  

 

 What features to use? 

 

 How to evaluate the model being produced? 

 

 How to deploy the model? 
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Classification Algorithms 

 Goal 

 Identify the category that an instance belongs to 
 

 Examples 

 Is a player going to make a purchase? 

 What is an opponent’s build order? 

 Is a user going to quit playing this week? 
 

 Algorithms 

 Decision Trees 

 Logistic Regression 

 Neural Networks  

 

 Boosting 

 Support Vector Machines 

 Nearest Neighbor  
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Strategy Prediction in StarCraft 

StarCraft: Brood War, Blizzard Entertainment 1998 
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Predicting Build-Orders in StarCraft 

 Goal 

 Predict the build order of opponents 
 

 Data Sources 

 Thousands of replays from Professional players  
 

 Results 

 Able to identify opponent build order minutes 
before it is executed 

 Also able to predict the timing of specific units  
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Application of ML to StarCraft 

 Problem Representation 

 Multiclass classification, 6 labels for mid-game builds  

 Collect data from professional StarCraft replays  
 

 Features 

 Build-order timings of units and features  
 

 Model Evaluation  

 Offline evaluation of classification algorithms 

 Simulated game time between 0 – 12 minutes  
 

 Model Deployment 

 During games, encode game state and predict build order 
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Timing Distributions 

 Different structure and units timings provide 
indicators of different build orders  
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StarCraft Replay Data 

 A partial game log from a Terran versus Zerg game 

Player Game Time Action 

2 
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Approach 

 Feature encoding 

 Each player’s actions are encoded in a single vector 

 Vectors are labeled using a build-order rule set 

 

 Features describe the game cycle when a unit or 
building type is first produced by a player 

 

     t,    time when x is first produced by P 

     0, x was not (yet) produced by P 

 

f(x)  =  { 
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Labeling Replays 

 A rule set for mid game strategies was built for each race 
based on analysis of expert play 
 

 Replays are labeled based on the order in which the tech tree 
is expanded 
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Protoss Rule Set 
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Experiment Methodology 

 Algorithms explored 

 Nearest neighbor variants  

 Decision trees 

 Boosting methods 

 State lattice  

 Rule set 
 

 Simulation Approach  

 Set all features to 0  

 Step through replay events and update features  

 Predict build order every 30 seconds  
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Build-Order Prediction Results 
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Timing Prediction Results 
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EISBot  
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Membership Conversion in DCUO 

DC Universe Online, Daybreak Games 2011 
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Membership Conversion in DCUO 

 Goal 

 Predict which users will convert to membership 
 

 Data Sources 

 Session and commerce data 

 Detailed in-game telemetry  
 

 Results 

 Weekly deployment of targeted user list 

 Experimented with different targeting strategies 
and uplift modeling  
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Application of ML to DCUO 

 Problem Representation 

 Binary classification (Converter vs. non-converter) 
 

 Features 

 Login patterns, recent purchases, game-feature usage  
 

 Model Evaluation  

 Offline evaluation of classification algorithms 

 Simulated upsell  
 

 Model Deployment 

 Send list of targeted users to game team  
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Model Evaluation 

 Lift  

 Compares sampled response to baseline response 
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Uplift Modeling  

 Goal 

 Target only persuadable users 

 

 

 

 

 

 
 Source: Predictive Analytics (Eric Siegel, 2013) 
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Uplift Modeling in DCUO 

 2-Phase Approach 

 

 Phase 1 

 Select users for targeting 

 

 Phase 2 

 Split users into Sure Things & Persuadable  

 Target users in the Persuadable group 
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Measuring Impact 

 Goal 

 Maximize Incremental revenue 

 

 Approach 

 Select targeted user group 

 Split targeted group into control and test  

 Deploy targeting and measure conversions   

 Compare test and control groups  

 Calculate incremental revenue  
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Regression Algorithms 

 Goal 

 Predict the value of the dependent variable of an instance  
 

 Examples 

 How many games is a user going to play?  

 What is the lifetime value of a player?  

 How to allocate players for balanced matchmaking?  
 

 Algorithms 

 Linear Regression  

 Regression Tree 

 Curve fitting  

 

 Boosting 

 Neural Networks  

 Nearest Neighbor  
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Player Retention in Madden NFL 

Madden NFL 11, Electronic Arts 2010 
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Player Retention in Madden NFL 

 Goal 

 Predict how long players will play 

 Identify features correlated with retention  
 

 Data Sources 

 Play-by-play game logs  
 

 Results 

 Recommendations provided to game team  

 Helped develop data-driven culture at EA 
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Application of ML to Madden 

 Problem Representation 

 Regression & Simulation 
 

 Features 

 Gameplay features used 

 Player performance  
 

 Model Evaluation  

 Offline evaluation of regression algorithms 

 Unique Effect Analysis  
 

 Model Deployment 

 Recommendations provided to game team 
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Robust Unique Effect Analysis   

 An algorithm that performs regression and 
analyzes unique effects to rank features 

 

 Algorithm overview 

1. Build regression models for predicting retention 

2. Perturb the inputs to the models  

3. Compute the impact of individual features 
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Algorithm Overview 

Testing 
Data 

Models 
Feature 

Rankings 
Feature  
Tweaking 

Analyst 

Training 
Data 

ML 
Algorithms 

Players 
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Player Representation 

 Each player’s behavior is encoded as the following 
features (46 total): 

 
 Game modes  

 Usage 

 Win rates 

 Performance metrics 

 Turnovers 

 Gain 

 End conditions 

 Completions 

 Peer quits 

 

 Feature usage 

 Gameflow 

 Scouting 

 Audibles 

 Special moves 

 Play Preference 

 Running 

 Play Diversity 
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Predicting the Number of Games Played 

0

50

100

150

200

250

0 50 100 150 200 250

A
ct

u
al

 G
am

e
s 

P
la

ye
d

 

Predicted Games Played 

Correlation Coefficient: 0.88 
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Feature Impact on Number of Games Played 

 How does tweaking a single feature impact retention? 
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Most Influential Features 

 The following features were identified as the most influential 
in predicting player retention  

Feature Impact 

Play Diversity Negative 

Online Franchise Wins Positive 

Running Plays Positive 

Sacks Made Positive 

Actions per Play Positive 

Interceptions Caught Positive 

Sacks Allowed Negative 

Peer Quit Ratio Negative 
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Predicted Number of Games for Different Win Rates 
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Madden Project Findings  

 Simplify playbooks 
 Players presented with a large variety of plays have 

lower retention and less success 

 

 Clearly present the controls 
 Knowledge of controls had a larger impact than 

winning on player retention 

 

 Provide the correct challenge 
 Multiplayer matches should be as even as possible,  

while single player should greatly favor the player  
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Recommendation Algorithms 

 Content-Based Filtering 

 

 Collaborative Filtering 

 Item-to-Item 

 User-to-User 

 

 Model Based 

 Bayesian Inference  
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Content-Based Filtering  

 Steam Storefront  
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Collaborative Filtering  

 EverQuest Landmark 
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Model Based  

 Xbox Recommendation System 

[Koenigstein et al., RecSys 2012] 
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Choosing an Algorithm 

 How big is the item catalog? Is it curated? 

 

 What is the target number of users? 

 

 What player context will be used to provide 
item recommendations? 
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Collaborative Filtering (User-Based) 

 Rates items for a player based on the player’s 
similarity to other players 

 Does not require meta-data to be maintained  

 Can use explicit and implicit data collection 

 Challenges include scalability and cold starts  
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User-Based Collaborative Filtering 

 Users 

 

 

 Items 
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Recommendation 
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Algorithm Overview  

Computing a recommendation for a user, U: 
 

For every other user, V 

     Compute the similarity, S, between U and V  

     For every item, I, rated by V 

      Add V’s rating for I, weighted by S to a running average of I 

Return the top rated items  
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Prototyping a Recommender 

 Apache Mahout 

 Free & scalable Java machine learning library  

 

 Functionality 

 User-based and item-based collaborative filtering  

 Single machine and cluster implementations 

 Built-in evaluation methods   
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Getting Started with Mahout 

1. Choose what to recommend:   
     ratings or rankings   

2. Select a recommendation algorithm 

3. Select a similarity measure 

4. Encode your data into Mahout’s format 

5. Evaluate the results 

6. Encode additional features and iterate  
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Generating Recommendations 

Building the Recommender  

  model = new DataModel(new File(“SalesData.csv”));  

  similarity = new TanimotoSimilarity(model); 

  recommender  = new UserBasedRecommender( 
                                                     model, similarity); 

Generating a List  

recommendations = recommender.recommend(1, 6); 
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Evaluating Recommendations  

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12

# 
R

e
le

va
n

t 
/ 

# 
R

e
tr

ie
ve

d
 

Number of Items Recommended 

User-Based (Tanimoto)

User-Based (Log Likelihood)

Item-Based (Tanimoto)

Item-Based (Log Likelihood)

Precision on the 
Landmark Dataset   



expressiveintelligencestudio  UC Santa Cruz 

Holdout Experiment 

 

 An experiment that excludes a single item from a 
player’s list of purchases 

 

 Goals 

 Generate the smallest list that includes the item 

 Enable offline evaluation of different algorithms  

 Compare recommendations with rule-based approaches  
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Landmark’s Holdout Results 

 

 

Recommendations significantly  

outperform a top sellers list 

 

80% increase in the holdout 

Recall Rate at 6 items 
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Deployment in Landmark 

 In-house implementation  
 

 Current Deployment 

 Recommendations are generated on the fly and cached  
 

 Planned Expansion 

 An offline process builds a user-similarity matrix 

 An online process generates item recommendations in 
near real-time  
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Recommended Reading 
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Data Science at Electronic Arts 

 

 Team Structure  

 

 Technology Stack  

 

 Project Lifecycles  

 

 Career Path 
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My Projects at EA 

 

 R Server & R Packages 

 

 Origin & EA Access Analytics  

 

 Analytics Best Practices  

 

 Technology Innovation 
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Questions?  

 Ben G. Weber 

 Senior Data Scientist, Electronic Arts 

 beweber@ea.com, @bgweber  

 http://tinyurl.com/WeberGameML  

 http://careers.ea.com   

http://tinyurl.com/WeberGameML
http://tinyurl.com/WeberGameML
http://careers.ea.com/
http://careers.ea.com/

