Game Analytics & Machine Learning

Guest Lecture: UCSC CMPM 146

expressiveintelligencestudio

Ben Weber

Sr. Data Scientist

Electronic Arts

beweber@ea.com

GAMES AND Playable media UC Santa Cruz

About Me

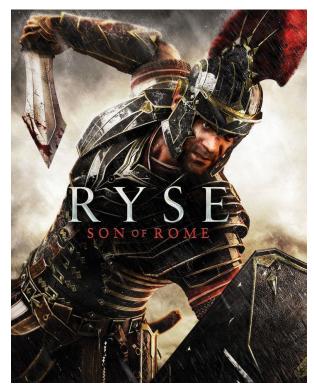
Ben G. Weber

- Senior Data Scientist
- Electronic Arts

Experience

- PhD in Computer Science, UCSC
- Technical Analyst Intern, EA
- User Research Analyst, Microsoft Studios
- Ecommerce Analyst, Sony Online Entertainment
- Director of BI & Analytics, Daybreak Games

Games & Services



Talk Overview

Game Analytics

Classification Algorithms

- Strategy Prediction in StarCraft: Brood War
- Membership Conversion in DC Universe Online

Regression Algorithms

Player Retention in Madden NFL

Recommendation Algorithms

Recommendation System in EverQuest Landmark

Data Science at EA

What is Game Analytics?

- Using data to inform game design and improve player lifecycles
- Gathering feedback from players, making changes, and measuring the impact

Example Applications

- Tuning game difficulty
- Balancing the game economy
- Content recommendations
- Computing the lifetime value of players

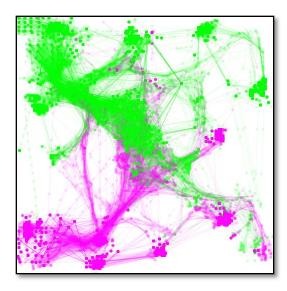
What Data Can We Analyze?

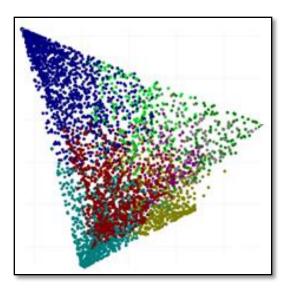
Game data

- In-Game events
- Commerce events
- Operational metrics

User Data

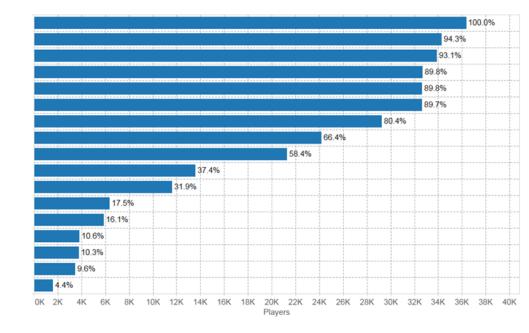
- Web sessions
- Acquisition channel
- 3rd Party Data
 - Steam Spy
 - Platform Data





How can we analyze players?

- Descriptive statistics and exploratory data analysis
- Experimentation & Measurement
- Segmentation
- Forecasting
- Predictive analytics



What teams use Analytics?

- Design
- Product Management
- Marketing
- Business Development
- Strategy
- Finance
- Dev Ops
- Community Management

- Question: Identify questions about the current design
- Record: Enumerate which data needs to be collected and deploy the game
- Analyze: Determine if the recorded data matches expectations
- Refine: Given the findings, analyze the design and formulate additional questions

Tools for Analytics

Storage

DBMS, Hadoop, Cloud Storage

Reporting

Excel, MicroStrategy, Tableau, D3

Analysis

SQL, R, Python, Scala

Model Building

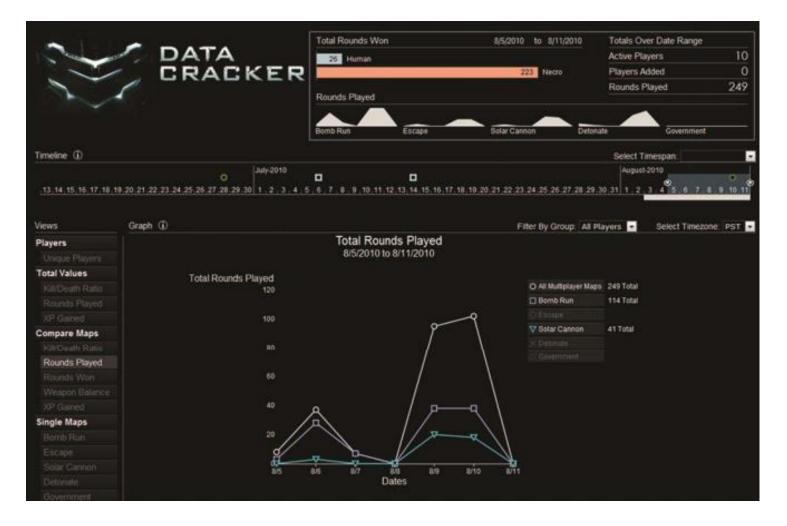
R, Weka, MLlib

Applications of Analytics in Games

- Dashboard Analytics (Metrics & KPIs)
- Spatial Analytics (Visualization)
- User Research Analytics
- Market Research Analytics
- Data Science

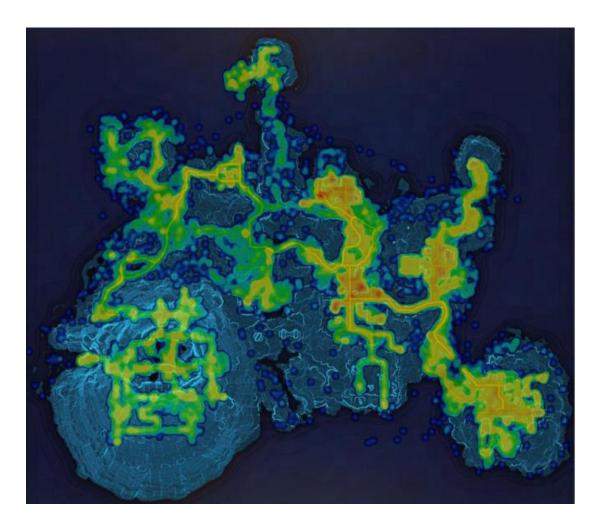
Dashboard Analytics

Dead Space 2 Data Cracker (Ben Medler, GDC 2011)



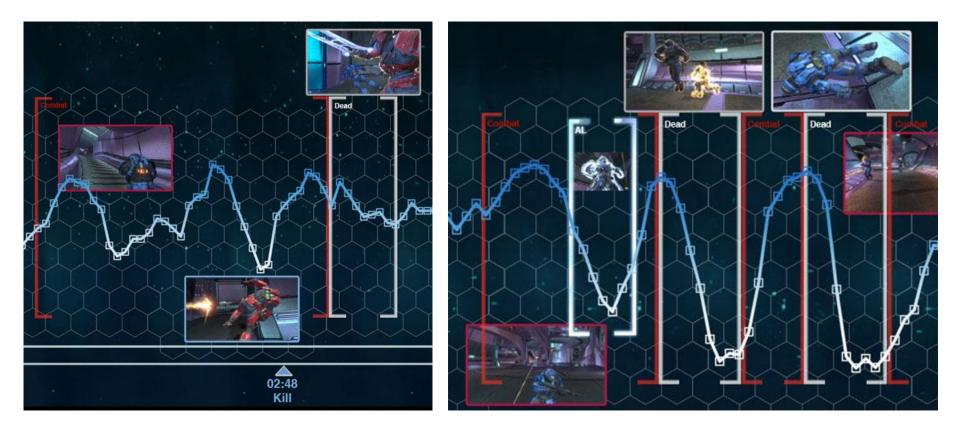
Spatial Analytics

Player movement in SWTOR (Georg Zoeller, GDC 2010)



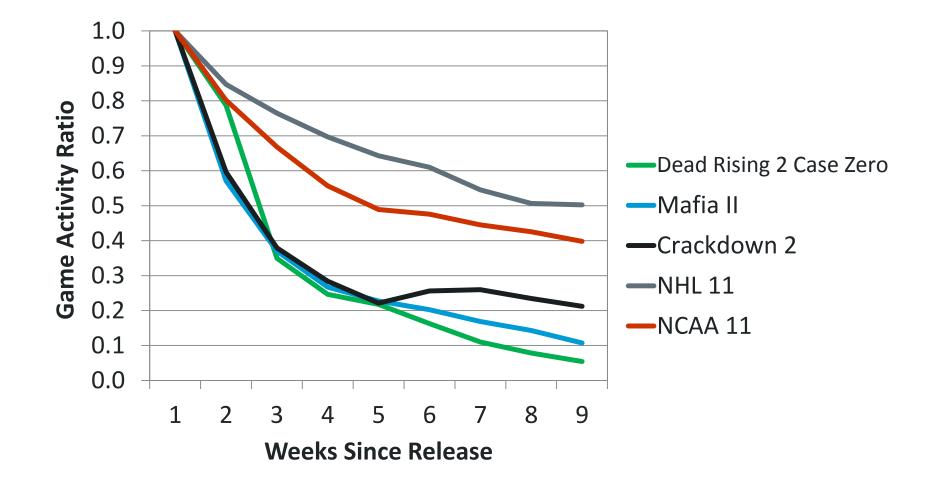
User Research Analytics

My Heart on Halo, Ben Lewis-Evans



Market Research Analytics

Player Retention data scraped from Raptr.com



Recommended Reading (Gamasutra)

Intro to User Analytics

- What to track and how to analyze data
- Anders Drachen *et al.*

Game Analytics 101

- What technologies to use?
- Dmitri Williams

Indie Game Analytics 101

- What metrics to track?
- Dylan Jones

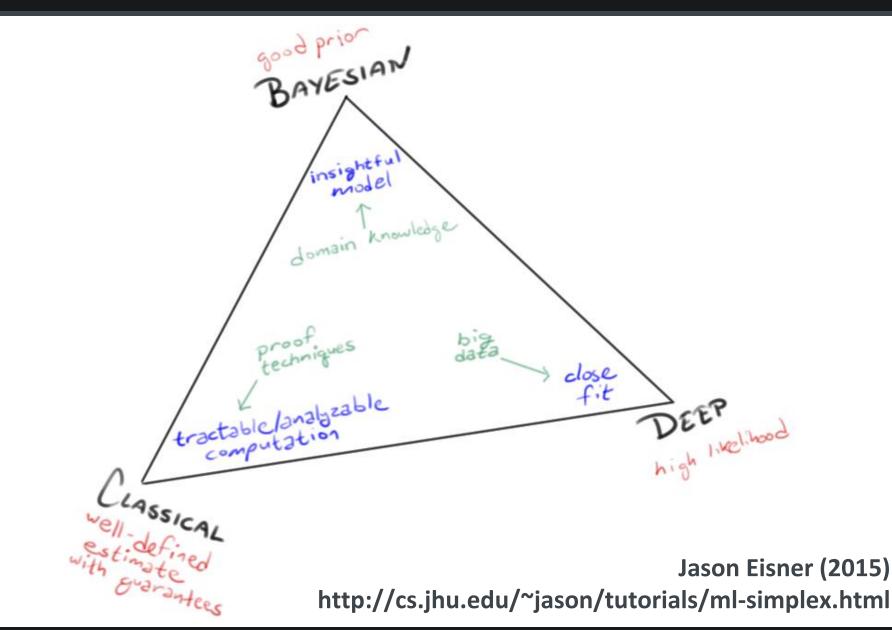
Machine Learning (ML)

- Algorithms that learn from data and make inferences or predictions
- Types of Problems
 - Classification:
 - Identifying the category of an instance
 - Prediction: label
 - Regression:
 - Estimating relationships between variables
 - Prediction: value

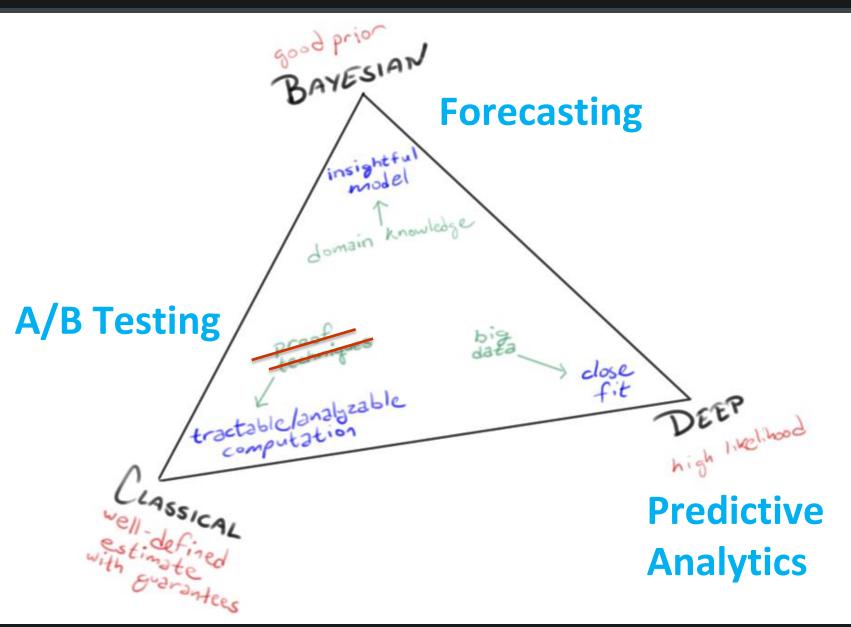
Clustering

Identifying similar groups of instances

The 3 Cultures of Machine Learning



Application to Game Analytics



Applying ML to Games

How to represent the problem?

What features to use?

How to evaluate the model being produced?

How to deploy the model?

Classification Algorithms

Goal

Identify the category that an instance belongs to

Examples

- Is a player going to make a purchase?
- What is an opponent's build order?
- Is a user going to quit playing this week?

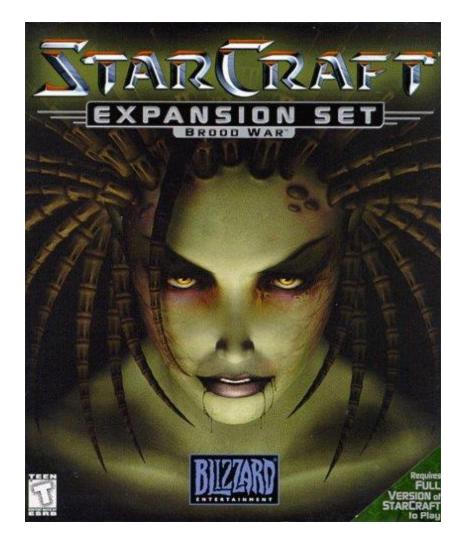
Algorithms

- Decision Trees
- Logistic Regression
- Neural Networks

- Boosting
- Support Vector Machines
- Nearest Neighbor

Strategy Prediction in StarCraft

StarCraft: Brood War, Blizzard Entertainment 1998



Predicting Build-Orders in StarCraft

Goal

Predict the build order of opponents

Data Sources

Thousands of replays from Professional players

Results

- Able to identify opponent build order minutes before it is executed
- Also able to predict the timing of specific units

Application of ML to StarCraft

Problem Representation

- Multiclass classification, 6 labels for mid-game builds
- Collect data from professional StarCraft replays

Features

Build-order timings of units and features

Model Evaluation

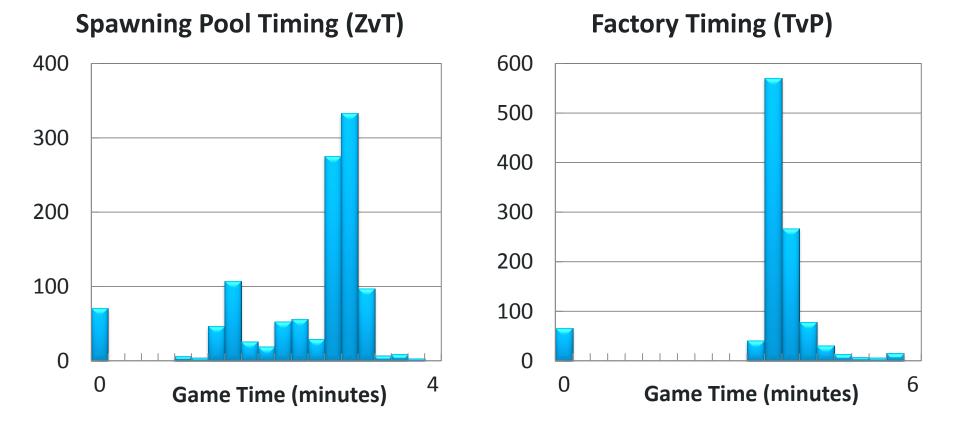
- Offline evaluation of classification algorithms
- Simulated game time between 0 12 minutes

Model Deployment

During games, encode game state and predict build order

Timing Distributions

 Different structure and units timings provide indicators of different build orders



StarCraft Replay Data

• A partial game log from a Terran versus Zerg game

Player	Game Time	Action
2	0:00	Train Drone
1	0:00	Train SCV
2	1:18	Train Overlord
1	1:22	Build Supply Depot
1	2:04	Build Barracks
2	2:25	Build Hatchery
1	2:50	Build Barracks
2	2:54	Build Spawning Pool
1	3:18	Train Marine
2	4:10	Train Zergling

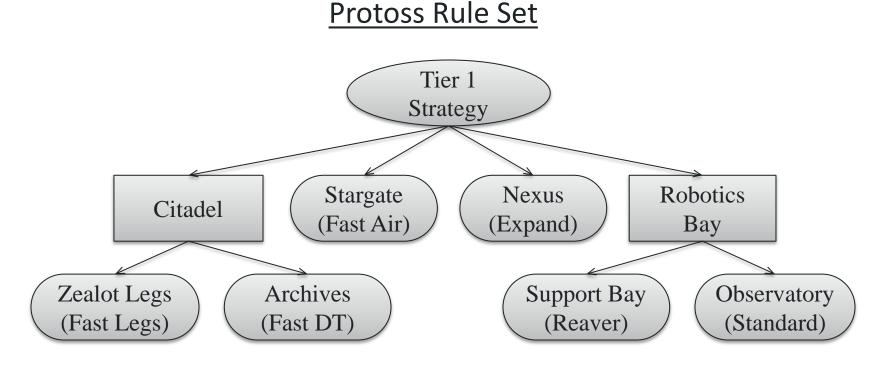
Feature encoding

- Each player's actions are encoded in a single vector
- Vectors are labeled using a build-order rule set
- Features describe the game cycle when a unit or building type is first produced by a player

 $f(x) = \begin{cases} t, & \text{time when } \mathbf{x} \text{ is first produced by } \mathbf{P} \\ 0, & \mathbf{x} \text{ was not (yet) produced by } \mathbf{P} \end{cases}$

Labeling Replays

- A rule set for mid game strategies was built for each race based on analysis of expert play
- Replays are labeled based on the order in which the tech tree is expanded



Experiment Methodology

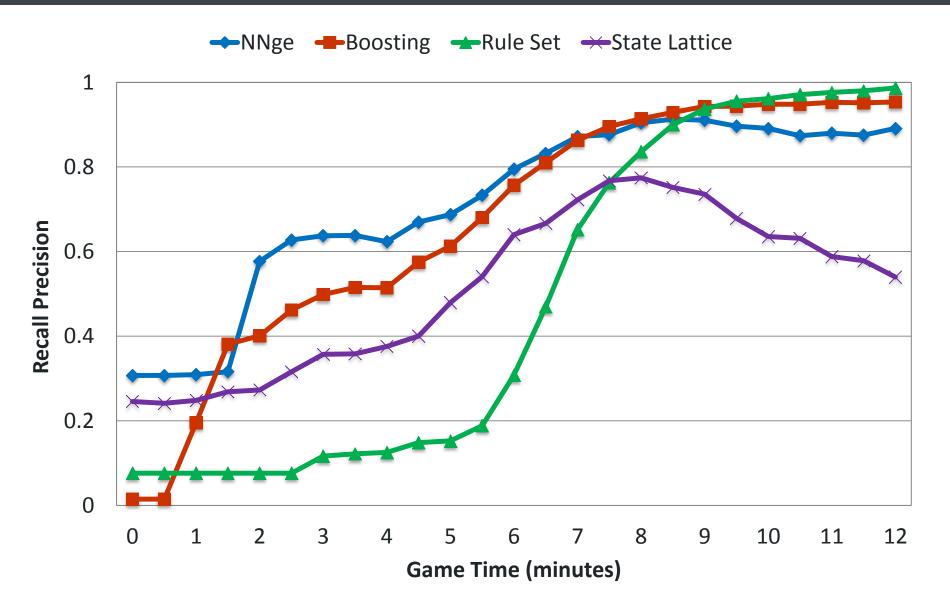
Algorithms explored

- Nearest neighbor variants
- Decision trees
- Boosting methods
- State lattice
- Rule set

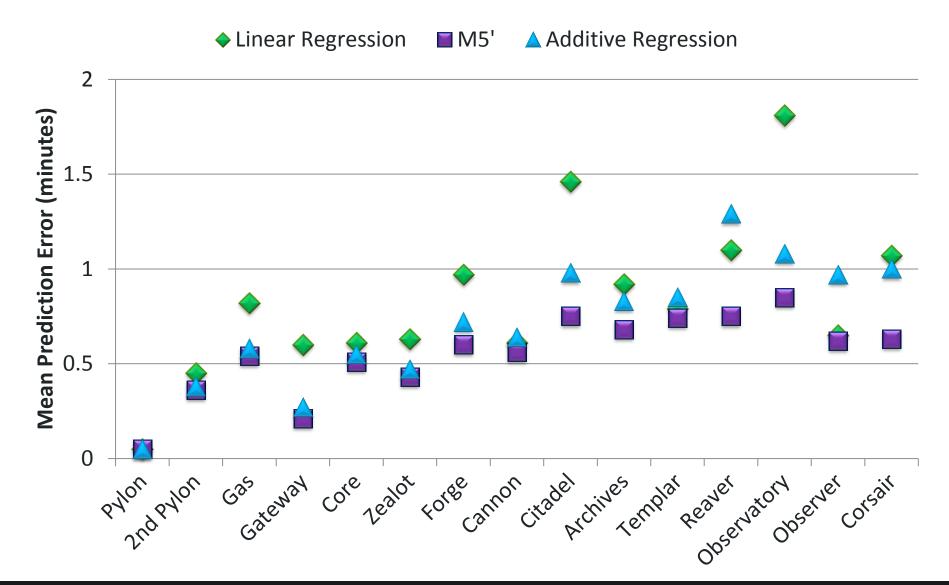
Simulation Approach

- Set all features to 0
- Step through replay events and update features
- Predict build order every 30 seconds

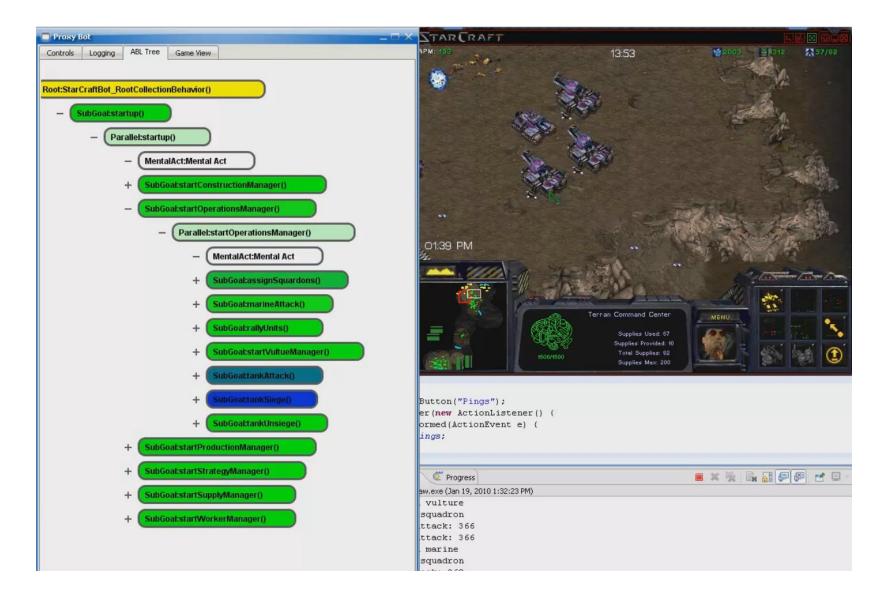
Build-Order Prediction Results



Timing Prediction Results



EISBot



Membership Conversion in DCUO

DC Universe Online, Daybreak Games 2011

Membership Conversion in DCUO

Goal

Predict which users will convert to membership

Data Sources

- Session and commerce data
- Detailed in-game telemetry

Results

- Weekly deployment of targeted user list
- Experimented with different targeting strategies and uplift modeling

Application of ML to DCUO

Problem Representation

Binary classification (Converter vs. non-converter)

Features

Login patterns, recent purchases, game-feature usage

Model Evaluation

- Offline evaluation of classification algorithms
- Simulated upsell

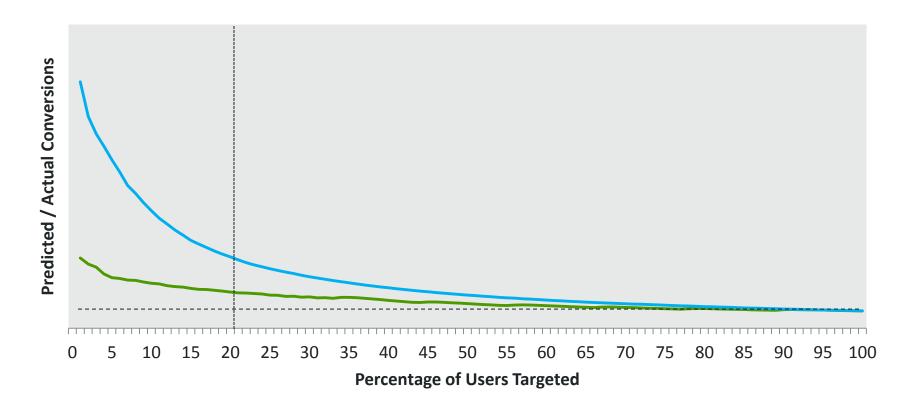
Model Deployment

Send list of targeted users to game team

Model Evaluation

Lift

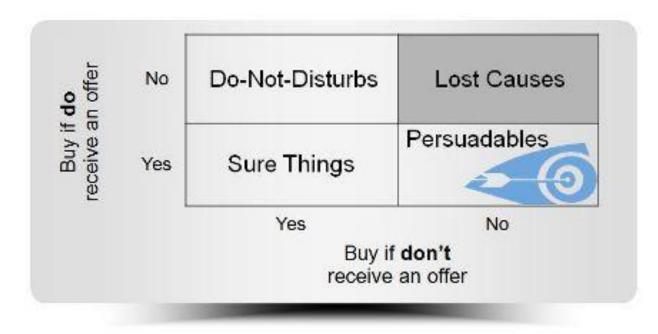
Compares sampled response to baseline response



Uplift Modeling

Goal

Target only persuadable users



Source: Predictive Analytics (Eric Siegel, 2013)

Uplift Modeling in DCUO

2-Phase Approach

Phase 1

Select users for targeting

Phase 2

- Split users into Sure Things & Persuadable
- Target users in the Persuadable group

Measuring Impact

Goal

Maximize Incremental revenue

Approach

- Select targeted user group
- Split targeted group into control and test
- Deploy targeting and measure conversions
- Compare test and control groups
- Calculate incremental revenue

Regression Algorithms

Goal

Predict the value of the dependent variable of an instance

Examples

- How many games is a user going to play?
- What is the lifetime value of a player?
- How to allocate players for balanced matchmaking?

Algorithms

- Linear Regression
- Regression Tree
- Curve fitting

- Boosting
- Neural Networks
- Nearest Neighbor

Player Retention in Madden NFL

Madden NFL 11, Electronic Arts 2010

Player Retention in Madden NFL

Goal

- Predict how long players will play
- Identify features correlated with retention

Data Sources

Play-by-play game logs

Results

- Recommendations provided to game team
- Helped develop data-driven culture at EA

Application of ML to Madden

Problem Representation

Regression & Simulation

Features

- Gameplay features used
- Player performance

Model Evaluation

- Offline evaluation of regression algorithms
- Unique Effect Analysis

Model Deployment

Recommendations provided to game team

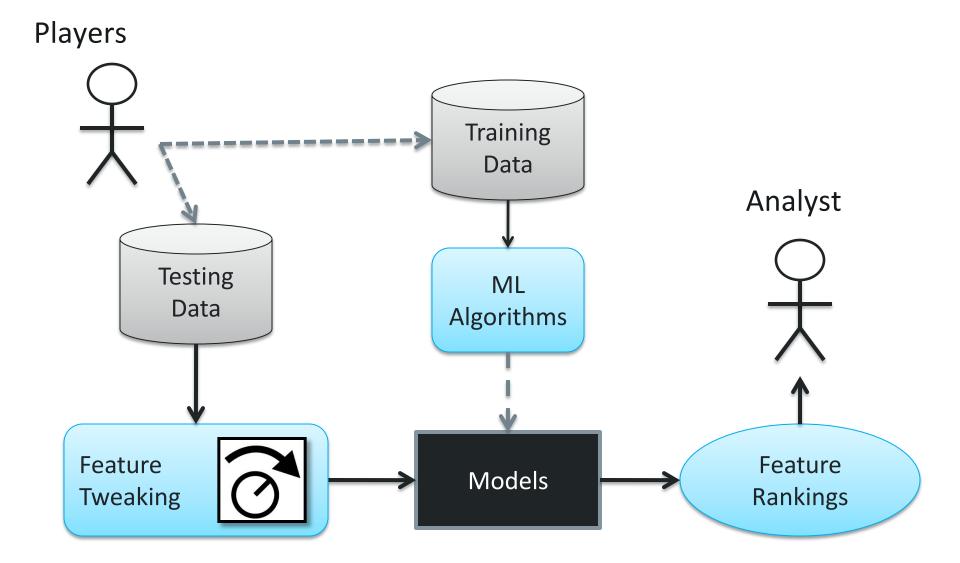
Robust Unique Effect Analysis

An algorithm that performs regression and analyzes unique effects to rank features

Algorithm overview

- **1**. Build regression models for predicting retention
- 2. Perturb the inputs to the models
- 3. Compute the impact of individual features

Algorithm Overview



Player Representation

 Each player's behavior is encoded as the following features (46 total):

Game modes

- Usage
- Win rates
- Performance metrics
 - Turnovers
 - Gain
- End conditions
 - Completions
 - Peer quits

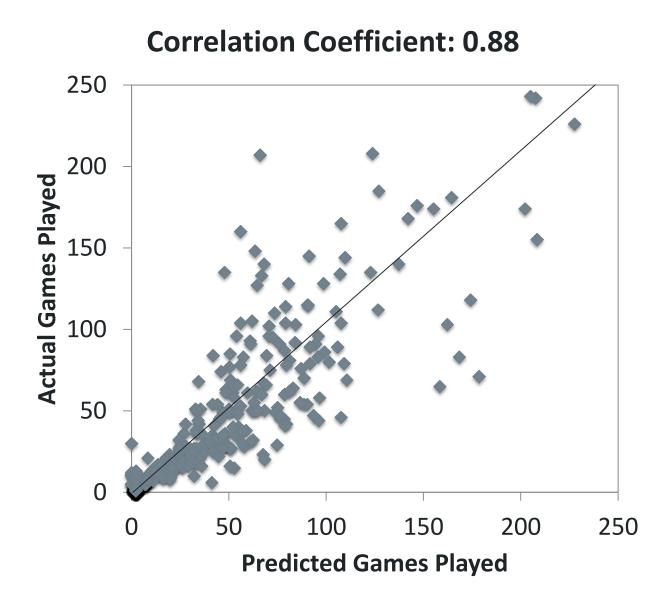
Feature usage

- Gameflow
- Scouting
- Audibles
- Special moves

Play Preference

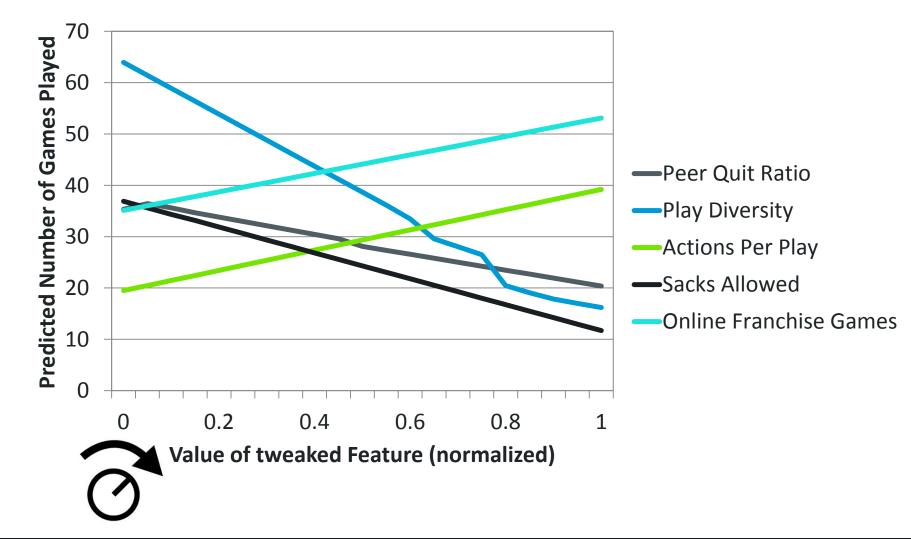
- Running
- Play Diversity

Predicting the Number of Games Played



Feature Impact on Number of Games Played

How does tweaking a single feature impact retention?



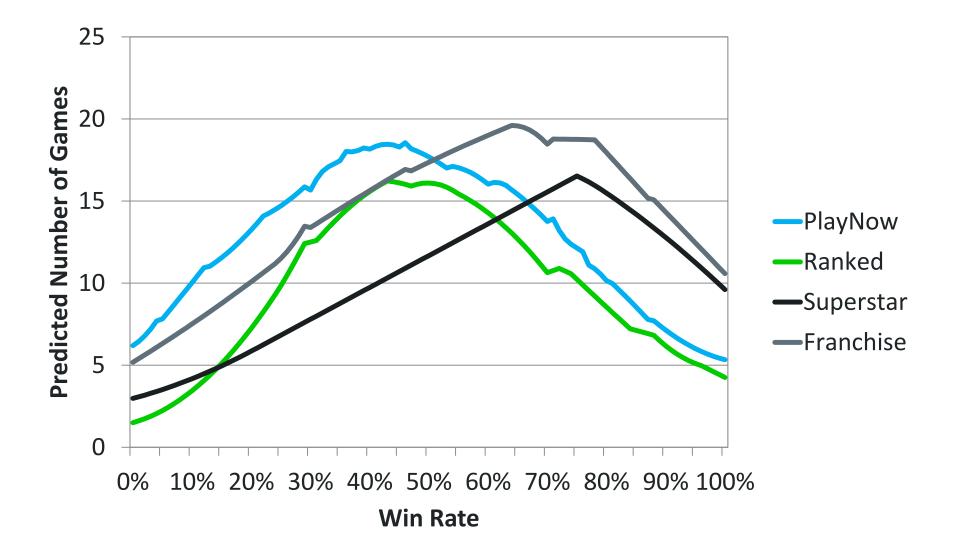
Most Influential Features

 The following features were identified as the most influential in predicting player retention

Feature	Impact
Play Diversity	Negative
Online Franchise Wins	Positive
Running Plays	Positive
Sacks Made	Positive
Actions per Play	Positive
Interceptions Caught	Positive
Sacks Allowed	Negative
Peer Quit Ratio	Negative

Correlation Strength

Predicted Number of Games for Different Win Rates



Madden Project Findings

Simplify playbooks

 Players presented with a large variety of plays have lower retention and less success

Clearly present the controls

 Knowledge of controls had a larger impact than winning on player retention

Provide the correct challenge

 Multiplayer matches should be as even as possible, while single player should greatly favor the player

Recommendation Algorithms

Content-Based Filtering

Collaborative Filtering

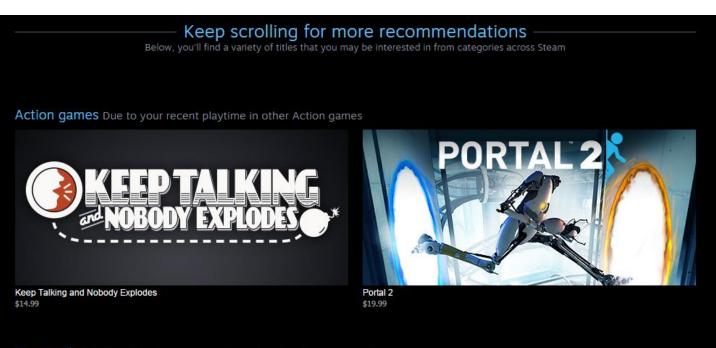
- Item-to-Item
- User-to-User

Model Based

Bayesian Inference

Content-Based Filtering

Steam Storefront



Free to Play games Due to your recent playtime in other Free to Play games

Eternal Senia Free to Play

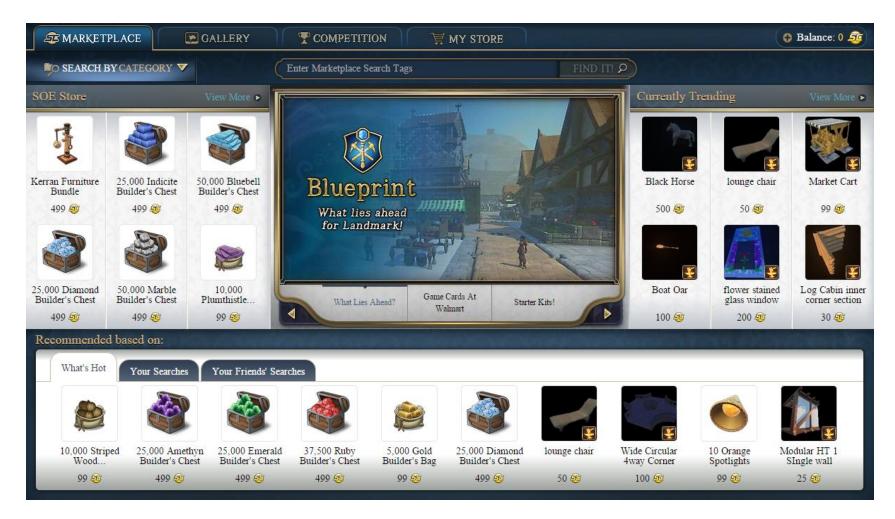
The Expendabros Free

Shadow Warrior Classic (1997) Free to Play

Free Free

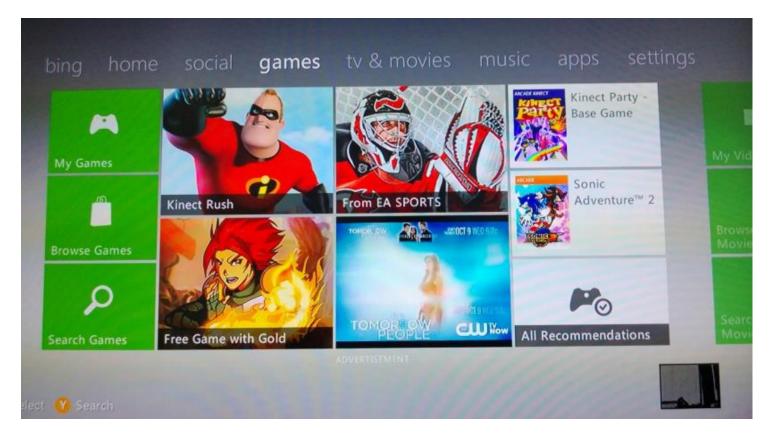
Collaborative Filtering

EverQuest Landmark



Model Based

Xbox Recommendation System



[Koenigstein et al., RecSys 2012]

• How big is the item catalog? Is it curated?

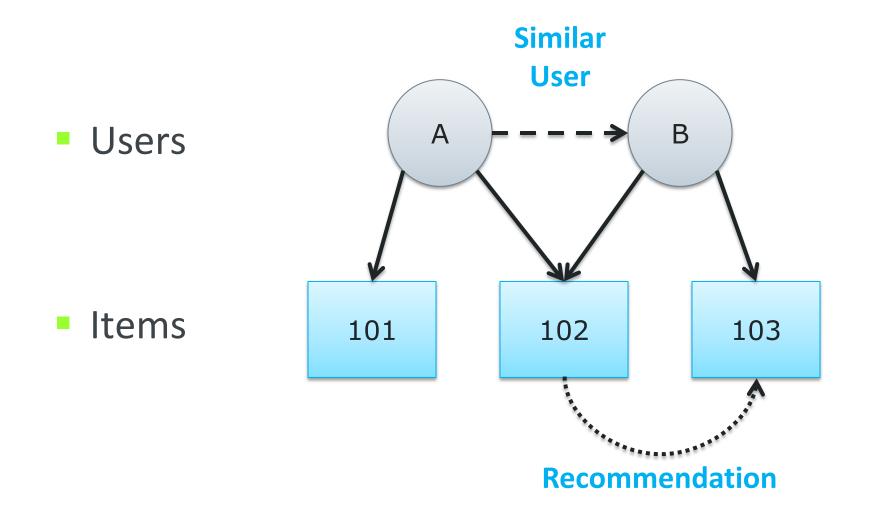
What is the target number of users?

What player context will be used to provide item recommendations?

Collaborative Filtering (User-Based)

- Rates items for a player based on the player's similarity to other players
- Does not require meta-data to be maintained
- Can use explicit and implicit data collection
- Challenges include scalability and cold starts

User-Based Collaborative Filtering



Computing a recommendation for a user, U:

For every other user, V

Compute the similarity, S, between U and V

For every item, I, rated by V

Add **V**'s rating for **I**, weighted by **S** to a running average of **I** Return the top rated items

Prototyping a Recommender

Apache Mahout

Free & scalable Java machine learning library

Functionality

- User-based and item-based collaborative filtering
- Single machine and cluster implementations
- Built-in evaluation methods

Getting Started with Mahout

1. Choose what to recommend: ratings or rankings

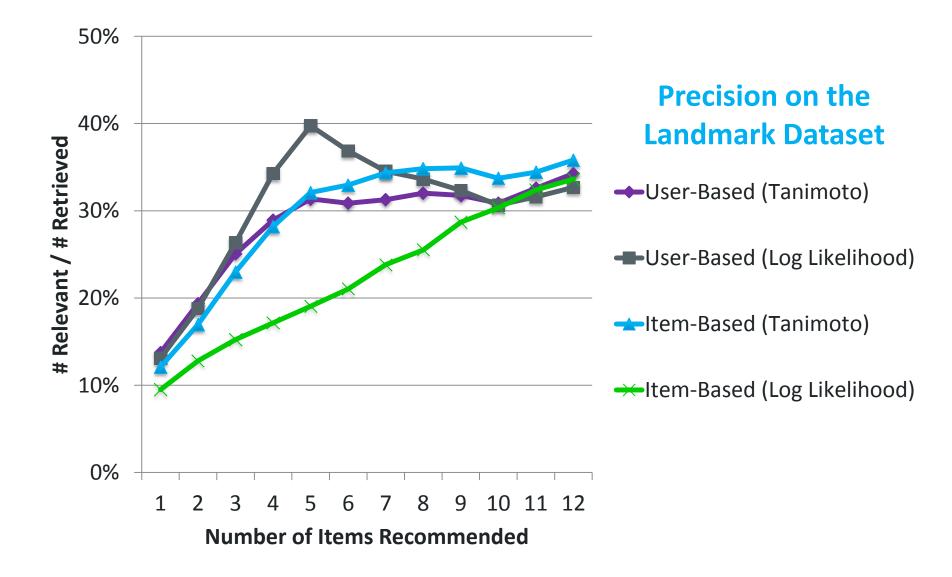
- 2. Select a recommendation algorithm
- 3. Select a **similarity measure**
- 4. Encode your data into Mahout's format
- 5. Evaluate the results
- 6. Encode additional features and **iterate**

Building the Recommender

Generating a List

recommendations = recommender.recommend(1, 6);

Evaluating Recommendations



 An experiment that excludes a single item from a player's list of purchases

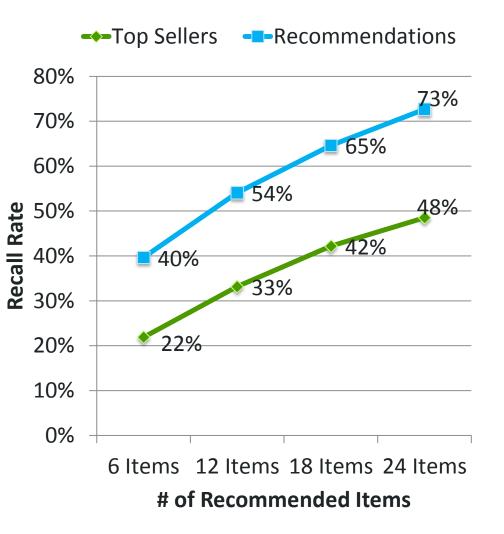
Goals

- Generate the smallest list that includes the item
- Enable offline evaluation of different algorithms
- Compare recommendations with rule-based approaches

Landmark's Holdout Results

Recommendations significantly outperform a **top sellers** list

80% increase in the holdout Recall Rate at 6 items



Deployment in Landmark

In-house implementation

Current Deployment

Recommendations are generated on the fly and cached

Planned Expansion

- An offline process builds a user-similarity matrix
- An online process generates item recommendations in near real-time

Recommended Reading

Data Science at Electronic Arts

Team Structure

Technology Stack

Project Lifecycles

Career Path

My Projects at EA

R Server & R Packages

Origin & EA Access Analytics

Analytics Best Practices

Technology Innovation

Questions?

Ben G. Weber

- Senior Data Scientist, Electronic Arts
- beweber@ea.com, @bgweber
- http://tinyurl.com/WeberGameML
- http://careers.ea.com

