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ABSTRACT
This paper describes an analysis approach based on a com-
bination of static and dynamic techniques to find run-time
errors in Java code. It uses symbolic execution to find con-
straints under which an error (e.g., a null pointer derefer-
ence, array out of bounds access, or assertion violation) may
occur and then solves these constraints to find test inputs
that may expose the error. It only alerts the user to the pos-
sibility of a real error when it detects the expected exception
during a program run.

The analysis is customizable in two important ways. First,
we can adjust how deeply to follow calls from each top-level
method. Second, we can adjust the path termination condi-
tion for the symbolic execution engine to be either a bound
on the path condition length or a bound on the number of
times each instruction can be revisited.

We evaluated the tool on a set of benchmarks from the
literature as well as a number of real-world systems that
range in size from a few thousand to 50,000 lines of code.
The tool discovered all known errors in the benchmarks (as
well as some not previously known) and reported on average
8 errors per 1000 lines of code for the industrial examples.
In both cases the interprocedural call depth played little role
in the error detection. That is, an intraprocedural analysis
seems adequate for the class of errors we detect.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution

General Terms
Reliability, Verification
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1. INTRODUCTION
As software becomes more complex, and achieves an in-

creasingly critical role in the world’s infrastructure, the abil-
ity to uncover defects becomes more and more crucial. Soft-
ware flaws are estimated to cost the United States economy
alone tens of billions of dollars annually [24]. In response,
many approaches to automated defect detection have been
explored.

Program analysis tools aimed at defect detection for pro-
cedural or object-oriented languages can be divided into
path-sensitive and path-insensitive approaches. Path insen-
sitive approaches, such as those based on abstract interpre-
tation, are traditionally used to show the absence of errors
and can produce large numbers of spurious warnings — un-
less the domain of programs and/or the error classes are

suitably restricted, as in the ASTRÉE tool [5]. Path sensi-
tive approaches tend to be focused on finding errors and ei-
ther use whole program analysis (from some main method),
or intraprocedural analysis, where each procedure is con-
sidered separately. Software model checkers, such as Java
PathFinder [30], BOGOR [25], and SPIN [15] take the for-
mer approach and static analyzers, such as ESC/Java [12],
take the latter approach.

Because we are interested in error detection, we will focus
on the path sensitive approach here. In particular we want
to investigate the spectrum of analyses that fall between
the extremes of whole program analysis and intraprocedural
analysis. In addition, since it is often hard to determine the
specification a program should adhere to, we will focus on
implicit correctness properties that, when violated, result
in Java runtime exceptions. Specifically, we look for null
pointer dereferences, out-of-bounds array accesses, negative
array size exceptions, class cast exceptions, divisions by zero,
and assertion violations.

Even when doing a path sensitive analysis, spurious warn-
ings can still occur. The negative impact of such false warn-
ings on the successful uptake of an error detection tool can-
not be stressed enough; for every warning, a human must
consider all contexts in which the code can be executed to
determine if the error is real or not, and this is a daunt-
ing task. Our goal is to try and reduce this effort as much
as possible. More precisely our analysis has zero spurious
warnings within the context of the top-level method being
analyzed. In other words, if it is possible for the top-level
method to be called with the discovered error-inducing in-
puts, then the error reported is real. Of course it is still
possible that, in the context of the rest of the program, the
method cannot be called with the inputs that expose the



error. However, at the very least, this shows an assumption
being made by the method that is not explicitly checked in
the code.

In order to reduce spurious warnings, we first ensure that
we prune most infeasible paths during symbolic execution by
passing the current path condition (i.e., the constraints on
the input required to reach the current state) to a decision
procedure to check for satisfiability. Next, when we detect
a possible error we solve the path condition to obtain test
inputs that may expose the error. Finally, we run the code
with these inputs and only report an error if the test raises
the expected exception.

The Check ’n’ Crash tool [8] takes a similar approach. It
uses ESC/Java [12] to generate constraints and JCrasher [7]
to execute the derived tests. In contrast, we use our own
symbolic execution engine to determine the effect of inter-
procedural analysis on the error detection capability (whereas
ESC/Java uses only an intraprocedural analysis). We start
by doing an intraprocedural analysis and then in the subse-
quent analyses follow call chains 1 level deep, 2 levels deep,
and so on, while keeping track of the errors detected. We
also allow the termination condition for the analysis of a
path to be customized: we can either set a bound on the
maximum size of the path condition or set a limit on how
many times a specific bytecode instruction can be revisited.

We have evaluated our tool on the same small examples
used by Check’n’Crash [8] and also on five larger examples
which range from 3,000 lines of code (LOC) to 48,000 LOC.
For the small examples we discovered all the errors reported
by Check’n’Crash, plus a few more. For the larger examples,
we found an average of about 8 errors per 1,000 LOC. During
the evaluation we calculated a number of statistics on the
performance of the technique that resulted in the following
interesting observations:

• The level of interprocedural analysis played no notice-
able role in the discovery of new errors. However, a
more deeply interprocedural analysis did result in more
constrained path conditions and thus fewer warnings.
Increasing the level of interprocedural analysis greatly
increased the execution time.

• For the benchmark examples, using a decision proce-
dure to detect infeasible paths pruned away very few
paths in an intraprocedural analysis (less than 10%,
on average), but this percentage increased closer to
20% during interprocedural analysis. In fact, the in-
crease is enough to make infeasibility checking indis-
pensable at even one level of interprocedural analysis.
For the larger examples, the infeasibility checks were
much more important and we found as many as 50%
of the paths to be infeasible.

• The size of the path condition played a very small role
in discovering errors. That is, analysis that allowed
only a small path condition was almost as likely to
find a given error as analysis that allowed a larger one.
Again, as expected, the larger the allowed path condi-
tion length, the longer the execution time.

• The time spent calculating path feasibility dominated
the total execution time in almost all cases (although
there was at least one exception, in which the genera-
tion and execution of the tests took longer).

• Null pointer errors dominated all others. In most cases
they accounted for more than 85% of all errors found.

• The number of errors discovered per 1,000 LOC seems
to be a good indication of the code quality. For ma-
ture and well used code, we discovered around 1 er-
ror/1,000 LOC, whereas research prototype code aver-
aged around 10 errors/1,000 LOC.

• The type and number of errors found can indicate cod-
ing style. One example had fewer null pointer deref-
erences since many methods compared their inputs to
null before proceeding.

The main conclusion of our work is that an intraproce-
dural analysis using symbolic execution and test generation
seems to be sufficient to find a large number of possible er-
rors. We conjecture, however, that to find deeper behavioral
errors this simple approach may not be as effective.

The following section describes variably interprocedural
analysis more formally. Section 3 then shows a simple ex-
ample that illustrate the advantages of our approach. Sec-
tion 4 describes the implementation of our tool, along with
our experience building it, while Section 5 describes its per-
formance on a variety of target programs. In Section 6 we
discuss a few optimizations that we’d like to do in the fu-
ture. Finally, Section 7 gives an overview of related work,
and Section 8 contains some concluding remarks.

2. VARIABLY INTERPROCEDURAL
ANALYSIS

Variably interprocedural analysis operates on a config-
urable set M of top-level methods. For whole-program anal-
ysis this set is the singleton set containing the entry point
of the program. For intraprocedural analysis, it is usually
the set of all methods in the program. Other analyses may
use different sets.

We associate each method m in M with a call depth CDm.
The call depth CDm indicates how many levels of sub-calls
of m will be explicitly analyzed when beginning with m at
the top level.

The process of analyzing a method m with a call depth
CD is as follows:

• If CD < 0, stop.

• Analyze each statement in m.

• When encountering a call to method m
′, evaluate m

′

with maximum call depth CD − 1

Because object-oriented programs rarely access instance
fields directly, but instead use accessor methods, we hypoth-
esize that setting CDm = 1 for all m in M will yield a sig-
nificant immediate benefit by making it possible to reason
about field values. Other configurations are probably also
useful, and the best settings for M and each CDm may be
application-dependent.

3. AN EXAMPLE
As an illustration of some of the advantages of variably

interprocedural analysis, consider the program in Figure 1
and the problem of detecting null pointer dereferences. One
approach might consist of dataflow analysis, with a lattice



01: class Example {
02: public String hexAbs(int x) {
03: String result = null;
04: if(x > 0)
05: result = Integer.toHexString(x);
06: else if(x < 0)
07: result = Integer.toHexString(-x);
08: return result.toUpperCase();
09: }
10: }

Figure 1: A simple Java program that illustrates
some benefits of symbolic execution.

describing null, possibly null, and non-null values for the
program variables. Assuming that the analysis does not
have access to any specification for the Integer.toString

method called on lines 5 and 7, it would likely report a
possible null pointer dereference on line 8.

Using variably interprocedural symbolic execution, we can
do better. If we set the analysis to evaluate all method calls
to a depth of 1, we can follow the calls to Integer.toString,
and determine that they never return null values. Then, be-
cause it is a path-sensitive analysis, it can determine that a
null pointer dereference can only happen (and must happen)
if x = 0. Thus, we have ruled out the false positives (the
assignments on lines 5 and 7), and given more information
about the true error (the missing case for x = 0). Given
the constraint on x, it is then trivial to construct a test case
that will trigger the expected exception.

4. IMPLEMENTATION
We have implemented a tool to apply our technique to the

detection of unhandled runtime exceptions in Java bytecode.
Our tool builds on the Soot framework for Java bytecode op-
timization [29]. Soot provides a large body of static analysis
code that, while intended for optimization, is also useful for
defect detection. The tool consists of approximately 8,000
lines of Java code, of which about 5,300 are devoted to sym-
bolic execution, and around 2,700 to test generation and
execution.

4.1 Architecture
Our tool is structured, roughly speaking, as a three-stage

pipeline. The first stage performs variably interprocedural
symbolic execution, and generates a set of symbolic repre-
sentations of programs states which, if reached, may result
in a runtime exception. The second stage then solves the
constraints imposed by these symbolic states to obtain con-
crete method parameter values suitable for testing. Finally,
the third stage uses the Java reflection API to invoke the
methods under analysis, with the parameters obtained in
the second stage.

4.1.1 Symbolic Execution
The tool begins symbolic execution by analyzing a speci-

fied set of methods, instruction by instruction, as illustrated
by the Java-like pseudocode in Figure 2.

For each method under analysis, we call exec with a
reference to the first instruction of the method, and an
“empty” symbolic state, representing the lack of any infor-

mation about the state of the program. The data structure
describing this state consists of a path condition and three
maps that take local variables, object fields, and array en-
tries, respectively, to symbolic expressions involving only
constants and immutable input variables.

As the tool processes each instruction, it updates the sym-
bolic state to reflect the instruction’s effects. During this
process, instructions that may throw runtime exceptions are
handled specially. If the (symbolic) values of the instruc-
tion’s operands indicate that a runtime exception is possible
(e.g., that the base of a field reference or the receiver of a
method call may be null, that the denominator of a division
operation may be zero (Figure 2, line 16), or that an array
index might be out of bounds (line 42)) the tool generates
a warning.

In most cases, determining whether a runtime exception
is possible requires deciding the satisfiability of an arbitrary
formula in first order logic (extended with arithmetic and
arrays). To make this decision, we query an external deci-
sion procedure, currently CVC-Lite [1]. We denote decision
procedure queries in the pseudocode by calls to satisfiable.

Method calls can be handled in two different ways (lines
19-38). Each method has an associated call depth (which
may be global, affecting all methods, or specified separately
for each method). When analyzing a method at the top
level, we pass in this depth as a parameter. When we en-
counter a call instruction, we check the current depth limit
(line 25). If it is greater than zero, the exec method calls
itself recursively with the depth limit decremented by 1 (line
28). Otherwise, the result of the method call is associated
with a fresh unknown value (line 35).

Whenever the tool encounters a branch instruction (lines
8-13), it makes two copies of the current state object, adds
the branch condition to the path condition of one copy, and
adds the negated branch condition to the other copy. It then
queries the decision procedure for each of the two new states
to determine whether they represent feasible paths. For each
feasible path, the symbolic executor recursively invokes itself
with the target instruction and associated symbolic state.

Ideally, pruning infeasible paths will reduce the false pos-
itive rate as well as execution time. Because we wanted to
experiment with how much benefit we get from path prun-
ing, we added the option to disable the decision procedure.
In this case, satisfiable always returns true when checking
branch conditions.

Before passing a path condition to the decision procedure,
we do some simple and efficient checks to detect obvious
contradictions, so that we can prune some paths without the
expense of pipe-based communication with CVC-Lite. This
simple analysis occurs even when the decision procedure is
disabled.

We use two metrics for ensuring termination in the pres-
ence of arbitrary branches, denoted in the pseudo-code by
the terminate call. The first metric keeps track of how
many times each instruction has been encountered. If the
number is above a certain instruction visitation threshold (3,
by default), our tool stops processing the current path. The
second metric keeps track of the number of conjuncts in the
path condition, instead. A command-line flag selects which
metric to use. A more sophisticated design might identify
loops in the control flow graph, and only count jumps to the
loop header to keep track of iteration counts. However, the
metrics we use are simpler to implement, and seem sufficient.



01: SymbolicValue exec(insn, state, depth) {
02: if(terminate(insn))
03: return NoValue
04: switch(insn.type) {
05: case CondBranch:
06: tstate = state.clone()
07: tstate.addPC(insn.cond)
08: fstate = state.clone()
09: fstate.addPC(negate(insn.cond))
10: if(satisfiable(tstate))
11: exec(insn.ttarget, tstate)
12: if(satisfiable(fstate))
13: exec(insn.ftarget, fstate)
14: case Div:
15: estate = state.clone()
16: estate.addPC(eqPred(insn.denom, 0))
17: if(satisfiable(estate))
18: handleWarning(estate)
19: case VirtualCall:
20: estate = state.clone()
21: estate.addPC(
22: eqPred(insn.thisObj, null))
23: if(satisfiable(estate))
24: handleWarning(estate)
25: if(depth > 0) {
26: cstate = state.clone()
27: cstate.clearLocals()
28: result = exec(
29: insn.calledMethod.first,
30: cstate, depth - 1)
31: state.setLocal(
32: insn.resultLoc,
33: result)
34: } else {
35: state.setLocal(
36: insn.resultLoc,
37: new Unknown())
38: }
39: case ArrayRead:
40: estate = state.clone()
41: estate.addPC(
42: geqPred(insn.index,
43: arraySize(insn.base)))
44: if(satisfiable(estate))
45: handleWarning(estate)
46: setLocal(
47: insnt.resultLoc,
48: arrayRef(insn.base, insn.idx))
49: case Return:
50: return insn.retVal
51: case ...
52: }
53: }
54:

55: void handleWarning(state) {
56: test = solveConstraints(state)
57: run(test)
58: }

Figure 2: Pseudo-Java code for the symbolic exe-
cution algorithm. This outline only shows how we
handle some of the more interesting bytecode in-
structions, and is not meant to be complete.

4.1.2 Constraint Solving
For each state that the symbolic executor warns about,

the constraint solving stage attempts to find concrete ob-
jects or primitive values that, when passed as the param-
eters or receiver object of the method under analysis, will
cause the expected runtime exception (line 56). To solve
constraints involving integer arithmetic, we use the POOC
solver [27]. For reference equality and inequality constraints
we use a union-find data structure to keep track of equiva-
lence classes.

Solving for values of primitive types is fairly easy, given an
existing constraint solver. Because object fields and array
entries are either primitive values or objects themselves, we
can handle them by decomposition.

4.1.3 Test Execution
The test execution stage begins when symbolic execu-

tion and constraint solving are completed for a particular
method. This stage iterates through the set of solutions pro-
duced by the constraint solver and, for each one, attempts to
generate appropriate objects for the receiver and parameters
of a method call (line 57).

We generate these objects using the Java reflection API,
which allows us to produce exactly the primitive values and
arrays we desire. To construct objects, we simply invoke
an arbitrary constructor in the appropriate class, and then
attempt to set its fields to the values obtained during con-
straint solving (recursing, of course, if those values are ob-
jects themselves). We use arbitrary values for any parame-
ters that are unconstrained.

This method of creating objects has a shortcoming. The
connection between constructor parameters and a particular
field of the resulting object is non-trivial, and may not even
exist, hence the choice of an arbitrary constructor. How-
ever, it may also be the case that the fields mentioned in
a solution are private. Therefore, it may be impossible to
directly create the desired program state. This may occur
because the state is, in fact, unrealizable. In the case that
the state is realizable, however, it may only be reachable
through an arbitrarily long sequence of method calls, which
we do not attempt to recreate. If these difficulties prevent
us from constructing a concrete state to test a given warn-
ing, we skip that warning. This may cause us to miss real
errors that depend on subtle conditions.

The process just described occurs within the same virtual
machine as the analysis, and test cases are generated and
executed using reflection. On the other hand, JCrasher, for
instance, creates external files containing JUnit test cases.
In retrospect, JCrasher’s approach seems more robust, and
we plan to adopt it in the future.

4.2 Sources of Unsoundness and
Incompleteness

Our implementation of symbolic execution has proven to
be very effective, and easy to implement. Certain aspects of
the design, however, introduce the possibility of both false
positives and false negatives. That is, the symbolic executor
sometimes warns about potential errors that cannot actually
occur during execution of the method in question, or misses
errors that may in fact occur. There are several factors
contributing to this inaccuracy:

• When we don’t follow a method call, there are two
possible modes of operation. We can simply assume



that the method returns an unknown value (if any-
thing), and doesn’t make any changes to global state.
This behavior, the default, helps the analysis in cases
where the assumption is true, but it may not be true
(and definitely isn’t in some cases). This can cause
us to miss real errors, or to warn about exceptions
that cannot actually occur. An alternative is to as-
sume that the method may make arbitrary changes to
global state, meaning that, after the call, nothing is
known about global state. We can turn this behavior
on with a command-line flag, but it also introduces the
possibility of both false positives and false negatives.

• Our tool does not have significant support for concur-
rency. Concurrently executing methods may behave
differently from our model, since changes to thread-
shared data may occur at any time.

• Our tool does not reason well about floating point
numbers or bit-level operations.

• We treat the response “Unknown” from the decision
procedure as indicating that a path might be feasi-
ble, and we explore it, even though it may actually
be infeasible. CVC-Lite will respond with “Unknown”
in cases where it knows its analysis to be incomplete,
such as when given a query involving multiplication.
We also have queries set to abort if they take too long
to solve (an upper limit of 20 seconds for the experi-
ments in this paper), and we treat the case of timeouts
as if they were “Unknown” responses.

• Return values from unanalyzed methods are consid-
ered to be totally unknown, and thus more paths are
possible than would be if we knew exactly what the
method could return in the given context. Of course,
interprocedural execution reduces this problem, but
there is always some code we do not analyze, such as
that in native methods.

• Access restrictions (such as those enforced by visibility
modifiers) may make it so that we cannot construct a
test case to reach a given symbolic state, as described
in Section 4.1.3. This may happen because the state
is actually infeasible (since other code cannot violate
the access restrictions, either), or because the program
follows the common pattern of making most or all
fields private, and setting them within constructors.
Because the link between constructor parameters and
fields is non-trivial, we may not be able to initialize
fields as desired. Because we cannot create test cases
for these instances, we skip them and thus do not re-
port them as potential errors.

5. EXPERIMENTAL RESULTS

5.1 Test Subjects
We evaluated our tool on a number of small programs

with known bugs that have been used to evaluate previous
defect detection tools, along with a collection of larger pro-
grams which are stable enough to be in widespread use, but
inevitably contain bugs as well.

Source Lines Classes Methods Known errors
s1 503 1 17 4,1
s1139 462 1 16 3,0
s2120 383 1 17 4,1
s3426 439 1 19 8,0
s8007 376 1 16 1,0
bst 346 2 34 4,0
self 8136 100 510 N/A
cup 11048 37 280 N/A
javafe 48170 229 2017 N/A
cream 3560 33 174 N/A
jpf 38538 382 2458 N/A

Figure 3: The sizes and known error counts for each
of our test subjects.

5.1.1 Small Programs.
The small programs were originally presented by Christoph

Csallner, et al., to evaluate JCrasher [7] and Check’n’Crash [8],
and have a set of known errors. The programs consist of:

• Several instances of the P1 program: the responses of
various students to a homework assignment, each of
which contains at least one bug. These are shown in
the results tables by student number: s1, s1139, s2120,
s3426, and s8007.

• A binary search tree implementation: bst.

5.1.2 Large Programs.
Our collection of larger code bases consists mainly of pro-

grams or libraries used in program analysis. These programs
inevitably contain bugs, but the exact locations and num-
bers of true bugs are unknown.

• Self-analysis of the tool’s own code.

• CUP, a LALR parser generator for Java (version 0.10k).

• Javafe, a Java parser and type checker, used as part of
the ESC/Java project (from ESC/Java2 version 2.0a9).

• Cream, a constraint solver (version 1.2).

• JPF, an explicit-state model checker for Java programs
developed at NASA Ames Research Center (version
3.1.2).

The sizes and known error counts (when available) for
each of our test subjects are show in Figure 3. The fourth
column gives a pair of numbers: the first is the number of
null-pointer dereferences, and the second is the number of
more complex errors.

5.2 Experimental Setup
We analyzed all of the test programs in a variety of con-

figurations. Each configuration included all of the meth-
ods in each program, with a global call depth of 0, 1, or 2.
Furthermore we varied the path termination condition: the
maximum path condition size was set to 5, 10, 15, 20 and
25 and the instruction revisitation bound was set to 3, 5
and 10. Since the results for the different path termination
conditions varied only in very few cases we only present a
few representative examples here.



Depth 0
Test Time Queries Pruned Warnings Crashes
s1 0m24s 309 7.76% 75 6
s1139 0m5s 351 7.69% 16 8
s2120 0m3s 240 2.08% 11 5
s3426 0m30s 1228 5.04% 35 11
s8007 0m3s 196 1.53% 4 2
bst 0m2s 82 0.00% 15 8

Depth 1
Test Time Queries Pruned Warnings Crashes
s1 0m5s 280 15.71% 20 6
s1139 0m6s 600 19.83% 14 8
s2120 0m5s 406 10.34% 11 5
s3426 0m32s 1770 13.55% 35 11
s8007 0m3s 260 11.15% 4 2
bst 0m5s 246 7.31% 13 8

Depth 2
Test Time Queries Pruned Warnings Crashes
s1 0m5s 320 18.75% 20 6
s1139 0m7s 670 21.64% 14 8
s2120 0m5s 468 12.39% 11 5
s3426 0m32s 1810 14.14% 35 11
s8007 0m3s 304 15.13% 4 2
bst 0m17s 1084 19.92% 13 8

Figure 4: Analysis results for small programs with
Maximum PC Size set to 15

In addition, we experimented with disabling the decision
procedure at call depth 0 (purely intraprocedural). The re-
sults of our experiments for the small programs appear in
Figures 4 and 5, while the results for the larger programs
appear in Figures 8 and 9. All experiments were run on a
dual-processor 2.66 GHz Pentium running RedHat Enter-
prise Linux 4 with the JVM given 2GB of memory.

In these tables, the “Queries” entries indicate the number
of queries posed to the decision procedure to test path sat-
isfiability, and the “Pruned” entries indicate the percentage
of these queries that were found to be unsatisfiable and were
not explored further. The “Warnings” entries indicate how
many unique possible crashes the symbolic executor discov-
ered, and the “Crashes” entries indicate how many of the
possible unique crashes actually occurred when tested.

5.3 Observations

5.3.1 Small Programs
We analyzed the small programs to determine how our

technique compared to Check’n’Crash. For these examples
we could also study each of the reported warnings and er-
rors to determine how the tool performs when we vary its
configuration.

Comparison with Check’n’Crash. We compared our
results to those given on the Check’n’Crash website1. We
found every error discovered by Check’n’Crash that was in
an error class supported by our tool, along with a few more:

1http://www-static.cc.gatech.edu/grads/c/csallnch/
cnc/

Depth 0
Test Time Queries Pruned Warnings Crashes
s1 0m19s 209 10.04% 75 6
s1139 0m6s 250 9.20% 16 8
s2120 0m3s 152 3.28% 12 5
s3426 0m25s 256 7.03% 38 11
s8007 0m2s 124 2.41% 4 2
bst 0m2s 82 0.00% 15 8

Depth 1
Test Time Queries Pruned Warnings Crashes
s1 0m28s 517 38.68% 68 5
s1139 0m7s 500 14.60% 14 8
s2120 0m7s 378 9.25% 12 5
s3426 1m0s 798 27.19% 33 11
s8007 0m2s 200 17.50% 4 2
bst 0m5s 246 7.31% 13 8

Depth 2
Test Time Queries Pruned Warnings Crashes
s1 0m31s 621 40.25% 68 5
s1139 0m8s 570 17.36% 14 8
s2120 0m8s 464 11.85% 12 5
s3426 0m32s 775 28.25% 30 11
s8007 0m3s 256 22.26% 4 2
bst 0m13s 858 18.76% 13 8

Figure 5: Analysis results for small programs with
Maximum Instruction Revisits set to 5

s1 We found the same ArrayIndexOutOfBoundsException in-
stances and three additional NullPointerException in-
stances.

s1139 We found the same ArithmeticException (due to divi-
sion by zero) and NegativeArraySizeException, but also
an additional ArrayIndexOutOfBoundsException and three
additional NullPointerException instances.

s2120 We found the same ArrayIndexOutOfBoundsException

instances and three additional NullPointerException in-
stances.

s3426 We found the same ArrayIndexOutOfBoundsException

and NegativeArraySizeException instances, but missed
the NumberFormatException. We found eight addi-
tional NullPointerException instances.

s8007 We found the same NegativeArraySizeException in-
stance and an additional NullPointerException.

bst We found the same two ClassCastException instances
and two additional NullPointerException instances.

We were surprised that Check’n’Crash didn’t find any of the
instances of NullPointerException that we found; either they
were suppressed in the reporting or some algorithmic weak-
ness must prevent them from being discovered. We don’t
currently check for NumberFormatException, so we missed
one of the errors caught by Check’n’Crash.

Call Depth. As can be seen from the results, the level of
interprocedural analysis did not affect the number of errors



01: int target = ...;
02: int delta = ...;
03: foo(int i) {
04: if (similar(i,target)) {
05: y = 10 / i;
06: }
07: }
08:

09: boolean similar (int i, int target) {
10: if (((target - delta) <= i) &&
11: (target + delta) >= i)
12: return true;
13: return false;
14: }

Figure 6: An example where intraprocedural analy-
sis is sufficient.

1: foo(int m) {
2: m = answer(m);
3: m = m / (1 - m);
4: }
5:

6: int answer(int v) {
7: return v == 42 ? 1: 0;
8: }

Figure 7: An example where interprocedural analy-
sis is required.

discovered. However, in some cases, most notably for s1,
there was a decrease in warnings going from intraprocedural
analysis to interprocedural analysis at depth 1. The code in
Figure 6 illustrates the reason for this behavior. Note that
depending on the value of target and delta there could be a
division by zero in this code. Assume we pick target = 100
and delta = 10; in this case we can never have a division by
zero.

During an intraprocedural analysis we will get one warn-
ing, but no error (since the warning will be for when i = 0
and that would make the division unreachable). The rea-
son for this is that the call to similar is ignored and a fresh
symbolic variable is created to hold the result of the call.

During an interprocedural analysis, however, we will not
even get the warning, since the constraints in similar, com-
bined with the fact that i should be 0, will be infeasible.
The interesting case here is if we pick the values to expose
the problem (e.g. change target to 1). Now both an intra-
and interprocedural analysis expose the error! Note that
an intraprocedural analysis also finds the problem simply
because we made the statement reachable (by picking tar-
get and delta to expose the problem); thus adding the con-
straint that i should be 0 to have a possible division by zero
is enough to actually find the error.

One can also create an example to show the opposite ef-
fect, where obtaining additional constraints exposes errors
that would otherwise not have been found. This happens
when analyzing the code in Figure 7. Here, an intraprocedu-
ral analysis has no additional constraints on the input value
m, and the chance that the test generator will randomly pick
42 is almost zero. However, during an interprocedural anal-

ysis the constraint that m should be 42 will be recorded, so
generating a test case that exposes the error is trivial.

It is easy to see that in general a statement that is poten-
tially buggy can be reached in many more ways that don’t
expose the error than in ways that do expose the error —
if this is not true then the error will probably be found and
fixed quickly. In general, the additional constraints obtained
by doing an interprocedural analysis serve mostly to reduce
the number of (globally) infeasible paths explored, thereby
reducing the number of warnings generated, but not affect-
ing the number of errors discovered.

As expected, if the tree of explored paths gets pruned due
to additional information from an interprocedural analysis,
the execution time is also reduced. This is visible in the
results for s1 in Figure 4.

Path Condition Size. Picking a small path condition
limit can influence the number of errors detected. In the
case of s1 and s2120 (requiring more than 5 constraints in
the path condition) and s1139 (requiring more than 10) the
minimum value of 5 constraints was not enough to expose all
the known errors. When using the number of revisits to an
instruction to terminate the search, the minimum number of
3 revisits is always enough the find the known errors. Even
for just 3 revisits the path condition can grow quite big. We
introduced this termination condition since it allowed us to
get a sampling of paths that contain large path conditions.

For example in the case of s1, picking 3 revisits can lead
to path conditions of size 34 (leading to a warning), and
when considering 10 revisits we see path conditions of size
83 (leading to a warning). Of course, it also has a drawback
that one can see in Figure 5 when doing an interprocedural
analysis: some errors will never be found (see the depth 1
and 2 cases for s1). This happens since we keep the instruc-
tion re-visitation count across multiple paths and thus can
prune a path after an instruction was revisited n times on
another (uninteresting) path. This is a weakness of our cur-
rent implementation and we plan to make the instruction
re-visitation count path-sensitive in the future.

Interestingly, in an intraprocedural analysis we can go as
far as completely eliminating revisits (setting the maximum
allowed revisits to zero) and all the known errors in these
small examples can still be exposed. This seems to indicate
that the errors in these examples are quite simple. How-
ever, the number of randomly generated inputs required to
uncover the known bugs reported in the JCrasher paper[8]
was much higher than the number of tests we required to
find the same bugs.

Although not visible in the results presented here, if we
increase the maximum allowed path condition, we then see
an increase in queries and warnings, and thus in runtime, as
we expected.

Pruning Infeasible Paths. We wanted to know how
many paths were actually pruned by the infeasibility check.
To the best of our knowledge this has not been studied be-
fore. We found that, in most cases, the larger the allowed
path condition, the larger the percentage of pruned paths.
This seems intuitive: adding more constraints increases the
number of ways a contradiction may occur. By the same to-
ken, the deeper the interprocedural analysis goes, the more
paths get pruned (see Figures 4 and 5). Note that we prune
very few paths during the intraprocedural analysis (on av-
erage less than 10%), due to the lack of constraints from
following interprocedural calls. For depth 1 we get an aver-



Depth 0
Test Time Queries Pruned Warnings Crashes
self 4m19s 4285 8.40% 734 71
cream 2m7s 55682 49.51% 170 18
CUP 16m16s 5430 8.28% 381 10
javafe 25m5s 123806 43.54% 1372 627
jpf 20m40s 42456 20.97% 2299 538

Depth 1
Test Time Queries Pruned Warnings Crashes
self 32m47s 15130 22.46% 792 77
cream 7m32s 163963 49.67% 207 18
CUP 19m57s 32740 3.27% 413 8
javafe 59m23s 152481 39.50% 1487 615
jpf 137m16s 84512 23.49% 2804 538

Depth 2
Test Time Queries Pruned Warnings Crashes
self 40m24s 21243 21.88% 768 76
cream 15m47s 243594 50.93% 211 18
CUP 17m32s 21270 9.53% 390 8
javafe 114m39s 87783 27.05% 1419 616
jpf(5) 178m56s 120865 39.53% 2421 539

Figure 8: Larger programs results with Maximum
PC size set to 10 (5 for JPF).

age closer to 16% and for depth 2 we observe an average of
around 20% pruned paths.

Given the above result, we wondered whether it was nec-
essary to prune infeasible paths at all. To investigate this
we switched off the infeasibility checks and thus moved the
analysis burden onto the constraint solving stage (that is, we
spent time trying to find solutions even in cases where none
exist). In the intraprocedural case, we still found all known
errors, sometimes even more quickly than before. This can
easily be explained by observing how few paths were pruned
anyway during the intraprocedural analysis. Of course there
are many more warnings in this case, but the total execution
time goes down. The time taken by extra constraint solving
is less than the time taken by the omitted feasibility checks.

However, as we increase the level of interprocedural anal-
ysis and thus increase the exponential blow-up, disabling
the decision procedure quickly becomes impractical. For ex-
ample, analyzing the s1 case for at level 1 took 5 seconds to
complete. Without the decision procedure it didn’t complete
within 10 minutes (at which point we manually terminated
the search).

It is interesting that what seems like a modest increase
in the percentage of pruned paths actually has a profound
effect on the scalability of the analysis.

5.3.2 Larger Programs
For the larger programs analyzed we don’t know the num-

ber of true errors and hence cannot say what fraction our
tool discovers. We are therefore more interested in whether
some of the observations from the small, controlled exam-
ples still hold. In addition we also look at some of the per-
formance characteristics we measured: relative cost of each
phase of our tool pipeline and the types of errors the tool
most frequently finds. We ran the experiments for all the
same configurations as for the smaller examples, and as be-
fore we only show some representative results (in Figures 8
and 9) and discuss the rest within the text.

Depth 0
Test Time Queries Pruned Warnings Crashes
self 2m54s 3146 11.98% 803 74
cream 1m4s 638 9.09% 175 18
CUP 8m5s 2243 7.84% 396 10
javafe 9m49s 11788 10.72% 1466 610
jpf 14m58s 9517 10.44% 2359 541

Depth 1
Test Time Queries Pruned Warnings Crashes
self 13m53s 12357 20.81% 851 80
cream 5m5s 2693 16.00% 221 18
CUP 18m22s 6370 17.04% 643 9
javafe 60m16s 48499 19.10% 1625 601
jpf 75m9s 44806 16.23% 2892 544

Depth 2
Test Time Queries Pruned Warnings Crashes
self 91m58s 24310 25.18% 868 80
cream 9m13s 4569 20.85% 223 18
CUP 30m9s 10627 23.78% 612 10
javafe 166m42s 100105 22.66% 1577 603
jpf(3) 484m58s 86157 19.65% 2969 546

Figure 9: Larger programs results with Maximum
Instruction revisits set to 5 (3 for JPF).

Call Depth. In the small examples we saw a decrease
in warnings between intraprocedural and one level of in-
terprocedural analysis. We now see something similar, but
between level 1 and level 2. For some programs we also see
a small increase in the errors found between the intrapro-
cedural analysis and level 1. This seems to indicate that
for these more complex programs we need to do at least a
level 1 interprocedural analysis. We conjecture the reason
for this is that the coding style for object-oriented languages
often dictates the use of accessor methods (rather than just
getting and setting fields directly) and thus to reason about
such programs we need to look at least one level deep. For
others we see a decrease in errors found during interproce-
dural analysis, but this is because our implementation can’t
always turn warnings into test cases. See Section 6.1 for
more details.

Path Condition Size. Since we don’t know what all the
errors are here, it is hard to judge how much influence the
size of the path condition has. We do see a small decrease in
the number of errors found when choosing a path condition
size bound of 5, but in all cases the number of errors seen is
within 2% of the largest number observed — for Cream and
CUP we actually find more errors with the smaller path
condition. The runtime increase for larger path condition
sizes is, however, quite dramatic. Note, for example, that
the level 2 analysis of JPF took too long and we only report
smaller configurations in the results (path condition bound
of 5 instead of 10 and a bound of 3 revisits instead of 5).

Pruning Infeasible Paths. In contrast with the small
examples, we now see much higher path pruning percent-
ages, even for intraprocedural analysis. This is likely be-
cause the methods are now much bigger and thus more likely
to contain contradicting branch conditions than in the small
examples. Switching the feasibility check off now causes the
search to fail (by running out of memory) for JPF and Javafe
during intraprocedural analysis, and the analysis takes at
least an order of magnitude longer for the other programs.



Running Times. In order to judge the expense of each
of the three stages in our pipeline, we measured time spent
doing feasibility checks via CVC-lite, how long it took to
generate the tests, and how long it took to execute the tests.
We conjectured beforehand that the decision procedure time
would dominate. On average this turned out to be the case.
However there were a few exceptions as well: for Cream,
Javafe and JPF a number of analyses had constraint solving
take about 40% of the total time with decision procedure
time taking almost all the rest; for CUP it turned out that
running the tests dominated the time (on average about 70%
of total time) with the rest spent in the decision procedure.
These results are clearly very application dependent.

Error Classes. We measured the percentage of errors
reported belonging to each of the supported error classes.
We found more instances of NullPointerException than Ar-

rayIndexOutOfBoundsException, AssertionError, ClassCastEx-

ception and NegativeArraySizeException. The analysis per-
formed on the system itself was one of the exceptions, where
we found about as many instances of AssertionError as Null-

PointerException (with a very small percentage of ClassCas-

tException thrown in). As it turns out this was the only pro-
gram that contained any assertion checks. For Cream the
split was about 90% NullPointerException and the rest Ar-

rayIndexOutOfBoundsException. CUP was the only true ex-
ception to our rule, where ArrayIndexOutOfBoundsException

accounted for about 65% of the errors and NullPointerEx-

ception the rest. We inspected the code and realized that
the developers explicitly added checks for null parameters
in many of the methods, thus reducing the number of these
errors found. For Javafe we saw about 12% of the errors
being ArrayIndexOutOfBoundsException with less than 2%
ClassCastException and the rest being NullPointerException.
Finally, for JPF we saw 85% NullPointerException, 8% Ar-

rayIndexOutOfBoundsException, 6% ClassCastException and
less than 1% NegativeArraySizeException.

Code Quality Prediction. Out of the examples we
looked at only CUP can be considered a mature product,
since it has been available for a number of years. Interest-
ingly this is also the program in which we found the fewest
errors — only about 1 for every 1,000 LOC (KLOC). This
is quite low by commonly accepted standards (which sug-
gests more like 4 per KLOC). For the academic programs
(i.e. all the other larger examples) we discovered between 5
and 12 errors per KLOC. This seems reasonable for research
prototype level code. We conjecture that with some more
calibration this tool could be used to predict code quality.
Note that the number of warnings may not be a good in-
dicator of the quality of the code. For example, we report
approximately the same number of warnings per KLOC for
Cream and CUP, but we find around 5 times more errors
per KLOC for Cream. However, we could interpret these
results as an indication that Cream has “shallower” defects.

6. OPTIMIZATIONS
Here we briefly discuss how our tool might be improved.

6.1 Test Generation
The main limitation of our current system lies with the

generation of the tests, and in particular, the creation of
objects for which private fields need to be set. One can
observe from the results that sometimes the number of er-
rors detected goes down between levels. This is due to the

1: foo(Node n1, Node n2) {
2: if (n1 != null && n2 != null) {
3: n1.x = 5;
4: n2.x = 6;
5: assert n1.x == 5 && n2.x == 6;
6: }
7: }

Figure 10: An example demonstrating problems
with aliasing.

randomness in the selection of constructors to call when an
object needs to be generated. Currently we always first look
for a constructor with no parameters, and, if one does not
exist, we randomly choose between those that do exist. Un-
fortunately, we can pick one that takes another object as
input which we may not be able to generate. We pick ran-
domly since we have observed that just picking the first one,
for instance, does not uncover as many errors as picking one
at random. Of course this scheme should be changed to try
all constructors until one is found that can be used to gener-
ate the object.That choice could then be recorded for future
use.

6.2 Environment Generation
The tool sometimes reports a warning that actually indi-

cates a real error, and although it is able to precisely create
the required objects to expose the error, the test does not
fail because it has complex interactions with the environ-
ment. An example (inspired by an actual case from the Next
Generation Air Traffic System being developed at NASA) is
when an out-of-bounds array access occurs when the num-
ber of files in a directory is used as an iteration bound for an
array of a fixed size. When executing the test, however, the
number of files in the directory might be less than the size
of the array, and thus the test does not uncover the error.

Ideally, we could create a test harness under which all
environment constraints can be encoded for use during the
test. In the example above the test harness will know that
the call to get the number of files in the directory should
return a predefined value, found during the constraint solv-
ing phase. We hope to add such an environment generation
feature for the generated tests in future work.

6.3 Aliasing
The tool will not be able to find the error in the code for

Figure 10, since it doesn’t consider that n1 and n2 could be
aliased. Adding additional aliasing constraints would cause
a blow-up in the constraint size, but would expose errors
like these. We believe an experimental study is required to
see whether adding such constraints is worthwhile, that is,
whether they would expose new errors or just reduce the
scalability of the tool.

7. RELATED WORK
Symbolic execution has a long history, and was used for

debugging and testing as early as the 1970s [20, 2]. Later
work applied similar techniques to Pascal [18], C [26], For-
tran [13], and Ada [10], and Zhang explored symbolic exe-
cution in the context of pointers and structured data [33].
Use of symbolic execution to generate unit tests fully au-



tomatically goes back at least as far as Korel’s 1996 paper
[22], and has been applied to object-oriented unit tests in
the Symstra system [31]. More recently, Engler et al. have
explored symbolic execution for detecting errors in systems
programs, such as file systems [32, 3]. Java Pathfinder, an
explicit state model checker, has been extended to support
symbolic execution [19].

Our work differs from these primarily in its flexible treat-
ment of procedure calls. To our knowledge, all of the previ-
ous work has either used intraprocedural or whole-program
analysis.

A similar approach is to do concolic testing [28, 14] where
the program is executed with (random) concrete data and
in parallel a symbolic execution collects all the constraints
that define the input partition the data is from. One of
these constraints is then negated, the resulting condition
solved and used to rerun the code. This approach allows
a systematic analysis of the paths of the program up to
some bounds. This differs from our approach since this is
a dynamic analysis that is driven by symbolic execution,
whereas ours is a static analysis (with symbolic execution)
that uses dynamic analysis to refine the results.

Significant research has also gone into automated test gen-
eration using methods other than symbolic execution. For
example, Cristoph Csallner, et al., have developed a trio
of tools for automated test generation in Java. The first,
JCrasher [7], generates random JUnit tests for all of the
public methods in a given set of classes, using any available
constructors or static methods returning the desired type to
generate receiver objects and method parameters.

Check’n’Crash [8] refines JCrasher by first passing the
program through ESC/Java [12] to find potential errors, and
then, as in our work, using a constraint solver to attempt to
generate tests to trigger each reported bug, if it exists. The
primary difference between our work and Check’n’Crash is
that we explore variably interprocedural symbolic execution,
whereas ESC/Java is a purely intraprocedural analysis tool.

Finally, DSD [9] further extends Check’n’Crash by inte-
grating Daikon [11], a runtime analysis tool aimed at infer-
ring program invariants. The invariants inferred by Daikon
are fed to ESC/Java to improve its analysis. The same idea
could be applied to our tool, and is orthogonal to our im-
provements.

Outside of the realm of symbolic execution and automated
test generation, a wide range of other tools have been devel-
oped to find bugs in programs. Some of the earliest examples
were simple tools such as Lint [17], and the more recent in-
carnation, Splint [23], which look for suspicious patterns of
code in C programs. Similar tools also exist for Java, such
as PMD [4] and FindBugs [16]. ESC/Java [12], mentioned
earlier, takes a somewhat more rigorous approach, using an
axiomatic semantics for Java along with an automated theo-
rem prover to check Java programs against provided specifi-
cations. There are also commercial tools such as Coverity [6]
and KlocWork [21] that are being used frequently in indus-
try and that also detect errors similar to those our approach
can uncover.

The systems in this final set differ from ours in that they
only suggest possible bugs, while our tool generates test
cases from each warning and runs them to see if crashes
actually occur. On the other hand, many of these tools can
look for bugs that do not cause the program to crash, while
ours only looks for exception-inducing bugs.

8. CONCLUSION
We have presented a technique and accompanying tool

that uses symbolic execution of Java code, with variable de-
grees of interprocedural context, to find possible runtime
errors. To reduce false positives, it uses the constraints con-
tained in the state associated with each warning to generate
a test that will show the error during execution. We have
evaluated the tool on known benchmarks, where it found
all the known errors along with a few that were previously
unknown. We also evaluated our tool on larger, publicly-
available systems. Among these larger examples, we found
many errors in research prototypes and considerably fewer
in the one more mature system.

Although the main motivation for our work was to reduce
the large number of false positives generated by a purely
static analysis, and to give better feedback about possible
errors, we believe the additional measurements turned out
to be equally useful in understanding the power of symbolic
execution and interprocedural analysis.

Our aim was to look for “simple” runtime errors (which
are the bread and butter of the very successful commercial
tools such as Coverity and KlocWork). The results indicate
that doing an intraprocedural analysis even for modest path
condition sizes (or a small limit on instruction re-visitation)
seems to give more than adequate results. We found that
doing a more deeply interprocedural analysis reduced the
number of warnings but not the number of errors. However,
in most cases, this slightly increased precision comes along
with a large increase in running time. Using the path con-
dition size as a termination condition has a more immediate
effect on the number of errors discovered, but again larger
values increase the runtime, and smaller values still seem
sufficient to find most errors.

However, our experiments only considered simple run-
time exceptions, which for the most part are mechanical
errors and not application-specific. Looking for more com-
plex, application-specific errors may require deeper interpro-
cedural analysis. It is unclear whether symbolic execution
would be sufficient for these more complex errors, since the
executions times in our experiments started to become pro-
hibitively large at 2 levels of interprocedural analysis.
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