
Automatic Type Inference via Partial Evaluation

Aaron Tomb
University of California, Santa Cruz

1156 High St.
Santa Cruz, CA 95060

atomb@cs.ucsc.edu

Cormac Flanagan
University of California, Santa Cruz

1156 High St.
Santa Cruz, CA 95060

cormac@cs.ucsc.edu

ABSTRACT
Type checking and type inference are fundamentally simi-
lar problems. However, the algorithms for performing the
two operations, on the same type system, often differ sig-
nificantly. The type checker is typically a straightforward
encoding of the original type rules. For many systems, type
inference is performed using a two-phase, constraint-based
algorithm.

We present an approach that, given the original type rules
written as clauses in a logic programming language, auto-
matically generates an efficient, two-phase, constraint-based
type inference algorithm. Our approach works by partially
evaluating the type checking rules with respect to the tar-
get program to yield a set of constraints suitable for input
to an external constraint solver. This approach avoids the
need to manually develop and verify a separate type infer-
ence algorithm, and is ideal for experimentation with and
rapid prototyping of novel type systems.

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.2 [Programming Languages]: Language Clas-
sifications—Constraint and logic languages; F.3.3 [Logics

and Meanings of Programs]: Studies of Program Con-
structs—Type Structure

General Terms
Languages, Experimentation

Keywords
Type Systems, Logic Programming, Applications of Declar-
ative Programming, Program Analysis

1. INTRODUCTION
Type systems provide numerous benefits in terms of soft-

ware reliability, performance, and maintainability. Type

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05, July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

systems are typically specified via a collection of type rules.
If these type rules are syntax-directed (i.e., there is exactly
one type rule for each language construct), then deriving a
corresponding type checking algorithm is straightforward.

However, developing a corresponding type inference al-
gorithm is often significantly more challenging. A number
of type inference (as well as program analysis) problems
can be efficiently solved via a two-phase approach. First,
a constraint-generating phase traverses the abstract syntax
tree of the target program to generate a collection of con-
straints over the type variables. Second, a constraint-solving
phase then solves these constraints. In addition to the diffi-
culties of developing such two-phase algorithms, validating
their correctness is non-trivial, since it requires formaliz-
ing the semantics of the intermediate constraint language as
well as specifying the behavior of both analysis phases. In
particular, specifying the constraint-generating phase often
requires a separate set of constraint-generating type rules [5].

In this paper, we propose an approach that avoids these
difficulties and complexities by using partial evaluation to
automatically derive an efficient, two-phase type inference
algorithm from the original type rules. We assume that the
type rules are represented as clauses in a logic programming
language such as Prolog. Because the Horn clauses in logic
programming closely resemble type rules, we can directly
convert existing type rules to Prolog clauses in a straight-
forward and elegant manner.

Type checking using the Prolog clauses is trivial. We sim-
ply need to pass the program and its associated types into
the predicate associated with whole-program judgement. If
the type rules are syntax-directed, a conclusion can be reached
in an efficient and deterministic manner.

Due to the powerful search mechanism inherent in logic
programming, type inference is almost as simple (although
quite inefficient). If we use the same Prolog code, but leave
type variables unbound, the depth-first search performed
by the Prolog implementation will attempt to find bindings
that satisfy the type rules. Thus, the Prolog encoding of the
type rules can serve the needs of both checking and inference
in an elegant and flexible manner.

However, while the Prolog implementation of the type
rules suffices for efficient type checking, Prolog’s depth-first
search strategy is extremely inefficient for many type infer-
ence problems. In particular, as we show in Section 2, it
may diverge even for comparatively simple type systems for
which efficient type inference algorithms exist. Thus, the
Prolog clauses provide a clear specification but extremely
inefficient implementation of a type inference algorithm.

The key contribution of this paper is to demonstrate how
to automatically translate the type rules (represented as
Prolog clauses) into an efficient, two-phase, constraint-based
type inference algorithm. The essence of our approach is to
partially evaluate these type rules. Apart from these type
rules (represented as Prolog clauses), the partial evaluator
only requires as input a simple partitioning parameter that
specifies how to partition the type inference computation
between the two phases. More specifically, the partial eval-
uator essentially interprets the Prolog type checking clauses,
and the partitioning parameter specifies which parts of this
computation should be delayed until the second, constraint-
solving phase. Typically, any relation that depends on the
actual types associated with type variables is delayed un-
til the second phase, which find a solution for these type
variables.

In general, the result of the first, partial-evaluation phase,
called the residual constraint, may be an arbitrary combina-
tion of delayed Prolog terms. However, for many type sys-
tems, the natural partitioning of the computation, as might
be used in a hand-coded two-phase analysis, yields a sim-
pler constraint language that can be solved efficiently. Such
constraint languages include propositional satisfiability and
Datalog, for which external solvers can find solutions much
more efficiently than a standard Prolog implementation.

We have validated this approach on a number of type sys-
tems and program analyses. Our experience indicates that,
in comparison to the traditional approach of using man-
ual effort to develop, debug, and verify type inference algo-
rithms, our proposed approach has a number of key advan-
tages:

• It provides a method for automatically deriving an ef-
ficient, two-phase type inference algorithm from the
original type checking or analysis rules.

• It removes the need to prove the correctness of the
inference algorithm, since its correctness follows from
the correctness of the partial evaluator.

• The Prolog representation of the type rules also func-
tions as an efficient type checker.

We note that, for the common case where the type check-
ing rules are syntax-directed, type checking and constraint
generation are deterministic and efficient, and partial eval-
uation yields a conjunction of delayed terms or constraints.
On the other hand, if the type checking rules are not syntax-
directed, then type checking and constraint generation are
not deterministic, and the residual constraint may include
both conjunctions and disjunctions of constraints. Thus, our
approach is still applicable, but may be less efficient.

The remainder of this paper is organized as follows. Sec-
tion 2 and Section 3 illustrate our approach, including the
implementation details. Section 4 describes experiments
with larger languages and type systems, and some work in
progress. Finally, Section 6 describes related work and Sec-
tion 7 gives some concluding remarks and describes our ideas
for future work.

2. TYPE INFERENCE FOR SUBTYPING
To illustrate our approach to automatic type inference,

this section presents an example of a simple type system
with subtyping over base types. The λsub language extends
the simply-typed λ-calculus with numeric constants, addi-
tion, multiplication, and conditional expressions, as shown
in Figure 1.

For x ∈ Identifiers, ni ∈ Z, nr ∈ R − Z.

e ::= ni

| nr

| x

| e1 e2

| λx : t.e

| if e1 then e2 else e3

| e1 op e2

op ::= + | ∗
t ::= base(b) | t → t

b ::= int | real

Figure 1: Syntax for λsub.

2.1 Type Checking
The type system for λsub includes a notion of subtyping

between the base types int and real, where int is a subtype
of real. The full type rules are shown in Figure 2. These
type rules are syntax-directed, so type checking takes time
linear in the size of the input program. (Many of the type
rules are directed by the syntax of expressions, and the rules
defining the subtyping relation are directed by the syntax of
types.)

Figure 3 shows a straightforward Prolog implementation
of a type checker for this type system. Each rule in the type
system corresponds to a clause in the Prolog code, and each
judgement corresponds to a predicate.

To illustrate the type checking process, consider the fol-
lowing program:

P ≡ (λx : base(int). x + 1)

We can pass P (converted to Prolog syntax) into the type
checker with the following goal, where [] represents the
empty environment:

tc([], P, T).

Because the definition of P provides a type for the argu-
ment of the λ abstraction, type checking is syntax-directed
and the Prolog code executes deterministically, with no back-
tracking. As expected, execution of this goal causes T to be
bound to the type:

base(int) → base(int)

2.2 Type Inference
The Prolog representation of the type rules gives more

than elegant type checking code, however — it also provides
a high-level executable specification of a type inference al-
gorithm.

Consider the unannotated version of the program from
Section 2.1:

P
′ ≡ (λx : Tx. x + 1)

b v b

b vb b

int vb real

t v t

b1 vb b2

base(b1) v base(b2)

t′1 v t2
t2 v t′2

t1 → t2 v t′1 → t′2

B ` e : t

B ` ni : base(int)

B ` nr : base(real)

B, x : t, B′ ` x : t

B ` e1 : t1 → t

B ` e2 : t2
t2 v t1

B ` e1 e2 : t

B, x : t1 ` e : t2

B ` λx : t1.e : t1 → t2

B ` e1 : base(int)
B ` e2 : t2
B ` e3 : t3

t2 vb t, t3 vb t

B ` if e1 then e2 else e3 : t

B ` e1 : base(t1)
B ` e2 : base(t2)

t1 v t, t2 v t

B ` e1 op e2 : base(t)

Figure 2: Type rules for λsub.

where Tx is an unknown type, and is represented by an un-
bound Prolog variable. Though we leave Tx unbound, the
Prolog representation of the type rules will still execute, but
they no longer are deterministic or syntax-directed. Finding
a solution for the goal:

tc([], P ′, T).

now requires performing a search for types Tx and T that
satisfy the type rules. In general, this search may be exces-
sively expensive. In particular, due to Prolog’s depth-first
search algorithm, it may not terminate, even for this basic
type system.

Grammar for the Prolog representations:

E ::= int(N)
| real(N)
| var(X)
| apply(E1, E2)
| lambda(X, T, E)
| if(E1, E2, E3)
| op(Op, E1, E2)

Op ::= ’+’ | ’*’
T ::= base(B)

| func(t, t)
B ::= int | real

Prolog code:

base_subtype(B, B).
base_subtype(int, real).

subtype(base(B1), base(B2)) :-
base_subtype(B1, B2).

subtype(func(A1, B1), func(A2, B2)) :-
subtype(A2, A1),
subtype(B1, B2).

tc(_, int(_), base(int)).

tc(_, real(_), base(real)).

tc(B, var(X), T) :-
member(bind(X, T), B).

tc(B, apply(E1, E2), T) :-
tc(B, E1, func(T1, T)),
tc(B, E2, T2),
subtype(T2, T1).

tc(B, lambda(X, T1, E), func(T1, T2)) :-
tc([bind(X, T1)|B], E, T2).

tc(B, if(E1, E2, E3), T) :-
tc(B, E1, base(int)),
tc(B, E2, T2),
tc(B, E3, T3),
subtype(T2, T),
subtype(T3, T).

tc(B, op(_, E1, E2), base(B3)) :-
tc(B, E1, base(B1)),
tc(B, E2, base(B2)),
subtype(base(B1), base(B3)),
subtype(base(B2), base(B3)).

Figure 3: Prolog implementation of the type rules for λsub.

From the standpoint of simplicity and elegance, we have
succeeded thus far: in only 22 lines of code derived directly
from the type rules, we have provided an algorithm that
performs both type checking and type inference. From a
performance and termination point of view, on the other
hand, type inference by direct execution (that is, depth-first
search) of Prolog code is clearly inadequate.

In contrast, a hand-coded type inference algorithm can
solve this problem in linear time using a two-phase constraint-
based approach. The first phase walks over the program’s
abstract syntax tree to generate a set of constraints over the
type variables. The second phase uses a separate solver that
is tuned to the constraint class at hand to efficiently solve
the constraints generated in the first phase.

The key insight of our work is that we can automatically
generate an efficient two-phase constraint-based type infer-
ence algorithm. This approach requires as input only:

1. the Prolog encoding of the type checking rules, and

2. an additional partitioning parameter that describes
how to partition the computation between the two
phases.

We perform this automatic partitioning using partial eval-
uation. While many partial evaluators for Prolog already
exist [21, 14, 15], they seem more complex then needed for
our purposes. Instead, we wrote our own partial evaluator
to provide precise control over which operations to evaluate,
and which to delay.

Our partial evaluator (shown in Appendix A) consists of a
simple meta-interpreter augmented with the ability to delay
the evaluation of certain goals to the second, constraint-
solving phase. The partial evaluator then returns a Boolean
combination of these delayed goals, which we will call a
residual constraint. Any solution to this residual constraint
is then a solution to the original type inference problem, and
vice versa. For clarity, our partial evaluator is restricted to
a subset of Prolog that is adequate to express the type sys-
tems discussed in this paper. It could easily be extended to
support other language constructs.

We consider our partial evaluator to be correct if solu-
tions to the residual constraint it generates are also solutions
to the original, directly-evaluated program. The following
states this property more formally.

Property 1. If θ is an assignment, tc is an algorithm,
P is an input for tc, peval is our partial evaluator, and C

is a residual constraint, then the following are equivalent:

1. θ � tc(P)

2. C = peval(tc(P)) and θ � C

The format of the residual constraint returned by the par-
tial evaluator varies depending on the original type rules
and the partitioning parameter. In general, the residual
constraint may be an arbitrary Prolog term. If the rules,
in the presence of types, are purely syntax-directed, then
the residual constraint will be a conjunction of the delayed
terms. Non-syntax-directed rules can produce arbitrary con-
junctions and disjunctions of delayed terms.

However, while residual constraints consisting of full Pro-
log are possible, in many situations the natural partitioning
of the problem, as might be used in a hand-coded two-phase
analysis, yields simple constraint languages (such as Datalog
programs or Boolean expressions) for which efficient solving
algorithms exist.

2.3 Base Type Inference
We initially focus on only inferring base types (that is, int

vs real) for λsub. In this case, the residual constraint after
partial evaluation is a conjunction of implications, which
can be solved in linear time by a monotonic propositional
satisfiability solver.

To illustrate the inference process more specifically, con-
sider the following program:

P ≡ (λz : base(b1).

(λx : base(b2). if x then 3.14 else 0)

((λy : base(b3). y) z))

The partitioning parameter:

delay(base subtype(,)).

tells the partial evaluator to postpone evaluation of any sub-
typing judgment between base types. This is the only con-
straint in the type rules that cannot be evaluated without
knowledge of the actual base types of the type variables.1

Partially evaluating the type checker on this program via
the goal:

peval(tc([], P, T), C).

yields the solution where T is base(b1) → base(b4), and the
residual constraint C is a conjunction of the following base
subtyping constraints:

real vb btemp

int vb btemp

btemp vb b4

b1 vb b3

b3 vb b2

b2 vb int

We translate these constraints into a Boolean formula via
the encoding

int ≡ false

real ≡ true

b1 vb b2 ≡ b1 ⇒ b2

Because we are only inferring base types, the resulting for-
mula is a monotonic satisfiability problem and can be solved
in linear time, yielding the following minimal (i.e., most pre-
cise) solution:

b1 = int

b2 = int

b3 = int

b4 = real

btemp = real

which means that T is base(int) → base(real).
Thus, partial evaluation allows us to use a natural Prolog

encoding of the type rules to perform both type checking
and base type inference efficiently. We can directly execute
the code for type checking, or use a partial evaluator to
automatically partition the code into a two-phase algorithm
for efficient base type inference.

1In general, this partitioning parameter describes which op-
erations in the program depend on the actual bindings of
the types being inferred, and thus should be delayed. This
set of operations can exclude equality constraints, if desired,
because the unification algorithm used in Prolog can keep
track of equality without knowing the bindings of the vari-
ables in question. Excluding equality comparisons from the
set of delayed operations leads to smaller generated con-
straint sets.

2.4 Full Type Inference
We next consider the more challenging problem of per-

forming full type inference. For this problem, we need to
instead delay the full subtype relation, via the partitioning
parameter:

delay(subtype(,))

For example, consider the elaborate version of the identity
function:

P ≡ (λz : tz.(λx : tx.x) z)(λy : tt.y)

Partially evaluating the type checker on this program via
the goal:

peval(tc([], P, T), C).

produces the solution where T = tx and the residual con-
straint C is the conjunction of the following subtyping con-
straints:

tz v tx

ty → ty v tz

As expected, these constraints indicate that T is a supertype
of ty → ty, where ty is unconstrained.

Performing full type inference introduces the full subtyp-
ing relation into the constraint language. In this case, the
mapping to a monotonic satisfiability problem is no longer
possible. However, the resulting constraints can still be
solved efficiently, for example, via a constraint solving frame-
work such as BANE [1] or BANSHEE [13].

Thus, the Prolog encoding of the original syntax-directed
type rules is quite flexible – in addition to functioning as an
efficient type checker, it can also (via appropriate partial-
evaluation) yield a constraint-generator for both base type
inference and full type inference.

3. SIGN ANALYSIS
To indicate the broad applicability of our approach, we

next apply it to a significantly different analysis system.
We consider the analysis of signs for a simple first-order
language FOL.

A program in FOL consists of a number of function def-
initions, and a single expression, as described in Figure 4.
Functions all take a single parameter, for simplicity, so the
environment is either empty or consists of one binding, as de-
scribed by the following grammar fragment. (The language
could easily be extended to include multi-arity functions.)

B ::= ε | x : s

The sign analysis rules for FOL are shown in Figure 5.
In these rules, the domain for sign variables is the power set
2{−,0,+}, so each sign variable is a set that indicates what
possible signs an expression can take. The rules for sign
propagation through arithmetic operations and conditional
expressions appear in Table 1 and Table 2, respectively.

These rules define a context-sensitive analysis of the pos-
sible signs of each function. Context-sensitivity [11] makes
the analysis more precise, by giving each function a different
input and output sign type in each context. It also makes
the analysis more expensive, because we must reanalyze a
function every time it appears in an expression.

For x ∈ Identifiers, n ∈ Z, s ∈ 2{−,0,+}.

P ::= d
∗
e

d ::= f (x) = e;

e ::= n

| x

| if e1 then e2 else e3

| e1 op e2

| f (e)

op ::= + | ∗

Figure 4: Syntax for FOL.

Result

Operand 1: s1 Operand 2: s2 + ∗
{−} {−} {−} {+}
{−} {0} {−} {0}
{−} {+} {−, 0, +} {−}
{0} {−} {−} {0}
{0} {0} {0} {0}
{0} {+} {+} {0}
{+} {−} {−, 0, +} {−}
{+} {0} {+} {0}
{+} {+} {+} {+}

Table 1: Operator definition for opsign(op, s1, s2).
Each row defines an implication of set constraints. If

a and b are the first two columns of row n, in order,

and c is the appropriate result column for the oper-

ation in question, then row n defines the implication

a ⊆ s1 ∧ b ⊆ s2 ⇒ c ⊆ result.

For a concrete example, consider the following program:

f(x) = g(x) + g(-2);
g(x) = x + 0;
f(0);

Under a context-sensitive analysis, the signs of g(0) and
g(-2) are {0} and {−}, respectively. Hence, the sign of
the function call f(0) is a combination of these two signs,
according to Table 1, yielding the resulting sign of {−}. If
we performed the analysis in a context-insensitive manner,
we would get the more approximate result {−, 0}.

As in the λsub case, we can express the analysis rules in a
natural manner as the Prolog code in Figure 6. The order of
the imply clauses at the top of the program ensure that exe-
cution under Prolog’s standard depth-first search semantics
yields a minimal (most precise) solution. The checkc predi-
cate in the Prolog code corresponds to the typing judgement
P ` f : s → s′. This predicate defines a relation associating
a function f and an argument sign s with a result sign s′,
in the context of a given program P .

We can perform the sign analysis of a program by directly
running the analysis code with the program to be analyzed
as input. However, since the analysis rules and correspond-
ing Prolog clauses are not syntax-directed, this approach
results in an inefficient search and extremely poor perfor-
mance. In particular, each function will be reanalyzed for
each call site, even if it has previously been analyzed with the
same sign parameter. Another issue is that, in the presence

Guard: s1 Then: s2 Else: s3 Result

{+} {+} ∅ {+}
{+} {0} ∅ {0}
{+} {−} ∅ {−}
{0} ∅ {+} {+}
{0} ∅ {0} {0}
{0} ∅ {−} {−}
{−} {+} ∅ {+}
{−} {0} ∅ {0}
{−} {−} ∅ {−}

Table 2: Operator definition for ifsign(s1, s2, s3). Each

row defines an implication of set constraints. If a, b,

c and d are the four columns of row n, in order, then

row n defines the implication a ⊆ s1∧b ⊆ s2∧c ⊆ s3 ⇒
d ⊆ result.

` P : s

P = d∗e

P ; ε ` e : s

` P : s

P ; B ` e : s

n < 0

P ; B ` n : {−}

n = 0

P ; B ` n : {0}

n > 0

P ; B ` n : {+}

P ; x s ` x : s

P ; B ` e1 : s1

P ; B ` e2 : s2

s = opsign(op, s1, s2)

P ; B ` e1 op e2 : s

P ; B ` e1 : s1

P ; B ` e2 : s2

P ; B ` e3 : s3

s = ifsign(s1, s2, s3)

P ; B ` if e1 then e2 else e3 : s

P ; B ` e : s

P ` f : s → s′

P ; B ` f(e) : s′

P ` f : s → s′

f (x) = e ∈ P

P ; x : s ` e : s′

P ` f : s → s′

Figure 5: Sign analysis rules for FOL.

imply(0, _, _).

imply(_, 0, _).

imply(1, 1, 1).

equal(S, S).

opsign(’+’, s(M1, Z1, P1), s(M2, Z2, P2),
s(M3, Z3, P3)) :-

imply(Z1, Z2, Z3), imply(Z1, M2, M3),
imply(Z1, P2, P3), imply(M1, Z2, M3),
imply(M1, M2, M3), imply(M1, P2, M3),
imply(P1, Z2, P3), imply(P1, M2, M3),
imply(P1, M2, P3), imply(M1, P2, P3),
imply(P1, P2, P3), imply(P1, M2, Z3),
imply(M1, P2, Z3).

opsign(’*’, s(M1, Z1, P1), s(M2, Z2, P2),
s(M3, Z3, P3)) :-

imply(Z1, Z2, Z3), imply(Z1, M2, Z3),
imply(Z1, P2, Z3), imply(M1, Z2, Z3),
imply(M1, M2, P3), imply(M1, P2, M3),
imply(P1, Z2, Z3), imply(P1, M2, M3),
imply(P1, P2, P3).

ifsign(s(GM, GZ, GP), s(TM, TZ, TP), s(FM, FZ, FP),
s(M, Z, P)) :-

imply(GM, TM, M), imply(GM, TZ, Z),
imply(GM, TP, P), imply(GP, TM, M),
imply(GP, TZ, Z), imply(GP, TP, P),
imply(GZ, FM, M), imply(GZ, FZ, Z),
imply(GZ, FP, P).

checkp(P, S) :-
P = p(_, E),
equal(AM, 0), equal(AZ, 0), equal(AP, 0),
tc(P, s(AM, AZ, AP), E, S).

tc(_, _, num(N), s(1, 0, 0)) :-
N < 0.

tc(_, _, num(N), s(0, 1, 0)) :-
N = 0.

tc(_, _, num(N), s(0, 0, 1)) :-
N > 0.

tc(_, B, var(X), S) :-
member(bind(X,S),B).

tc(P, B, op(Op, E1, E2), S) :-
tc(P, B, E1, S1),
tc(P, B, E2, S2),
opsign(Op, S1, S2, S).

tc(P, B, if(E1, E2, E3), S) :-
tc(P, B, E1, S1),
tc(P, B, E2, S2),
tc(P, B, E3, S3),
ifsign(S1, S2, S3, S).

tc(P, B, call(N, E), S) :-
tc(P, B, E, S1),
checkc(P, N, S1, S).

checkc(P, F, AS, RS) :-
P = p(Defs, _),
member(func(F, X, E), Defs),
tc(P, [bind(X,AS)], E, RS).

Figure 6: Prolog implementation of the type rules for FOL.

of recursive functions, the Prolog derivation or proof tree
can become infinite, though it will remain regular. Under
standard Prolog semantics, the analysis of recursive func-
tions would not converge.

We solve of both of these problems by using partial eval-
uation to partition the problem into two phases, where the
residual goal of the first phase is a Datalog program that is
then solved by the second phase, possibly via efficient tech-
niques such as binary decision diagrams [24]. Our approach
proceeds as follows:

1. We delay the implication that occurs in the defini-
tions of the arithmetic and conditional operators, since
this implication is dependent on the signs of variables,
which are not known at partial-evaluation time. This
is achieved with the following partitioning parameter:

delay(imply(_, _, _)).

2. Since the checkc predicate is defined recursively, par-
tial evaluation of the type checker may not terminate
on recursive target programs unless this predicate is
also delayed. However, we only partially-delay this
predicate. That is, we retain the checkc predicate in
the residual program, but in partially-evaluated form.
For each function f in the target program, the resid-
ual program contains a clause for checkc(P,f,s,s′),
where the body of this clause has already been par-
tially evaluated.

In addition, the first parameter P is redundant, since
the abstract syntax tree traversal has already been per-
formed, and so this parameter is elided. Therefore, the
partial evaluator transforms checkc to a relation on
the final three parameters, whose body consists of the
residual goal from the partial evaluation of its original
body.

We indicate that we want the body of a predicate to re-
main in the residual program in this fashion with the
following partdelay partitioning parameter parame-
ter:

partdelay(checkc(_, _, _, _), [y,n,n,n]).

where the list appearing after the predicate specifica-
tion describes which parameters to remove — y means
to remove the parameter in that position, and n means
to retain it.

3. To give us a top-level predicate in the residual Datalog
program, we delay the checkp predicate with:

partdelay(checkp(_, _), [y,n]).

where we again remove the first parameter, P, because
it will never appear in the residual goal derived from
the partial evaluation of the body.

After partial evaluation, a simple post-processing step can
flatten all of the sign structures into three individual vari-
ables, yielding a Datalog program. The Datalog program
can then be evaluated much more efficiently than an arbi-
trary Prolog program, because every Datalog relation is over
a finite domain. This restriction allows for efficient execu-
tion strategies such as the use of binary decision diagrams
[24].

Consider again the example program P from the begin-
ning of this section. Partial evaluation with the goal:

peval(checkp(P, s(M, Z, P)), R)

followed by flattening gives that R is the following Datalog
program:

imply(0, _, _).
imply(_, 0, _).
imply(1, 1, 1).

checkp(M, Z, P) :-
checkc(f, 0, 1, 0, M, Z, P).

checkc(g, AM, AZ, AP, RM, RZ, RP) :-
imply(AZ, 1, RZ), imply(AZ, T1, RM),
imply(AZ, T2, RP), imply(AM, 1, RM),
imply(AM, T1, RM), imply(AM, T2, RM),
imply(AP, 1, RP), imply(AP, T1, RM),
imply(AP, T1, RP), imply(AM, T2, RP),
imply(AP, T2, RP), imply(AP, T1, RZ),
imply(AM, T2, RZ).

checkc(f, AM, AZ, AP, RM, RZ, RP) :-
checkc(g, AM, AZ, AP, GM1, GZ1, GP1),
checkc(g, 1, 0, 0, GM2, GZ2, GP2),
imply(GZ1, GZ2, RZ), imply(GZ1, GM2, RM),
imply(GZ1, GP2, RP), imply(GM1, GZ2, RM),
imply(GM1, GM2, RM), imply(GM1, GP2, RM),
imply(GP1, GZ2, RP), imply(GP1, GM2, RM),
imply(GP1, GM2, RP), imply(GM1, GP2, RP),
imply(GP1, GP2, RP), imply(GP1, GM2, RZ),
imply(GM1, GP2, RZ).

The goal checkp(M, Z, P) has the minimal solution: M

= 1, Z = 0, P = 0. Or, in other words, the expression f(0)

has the sign {−}, as expected.
This section has shown that partial evaluation can ef-

fectively produce constraints in forms other than that of
Boolean expressions, but which also can be solved in a rea-
sonably efficient manner.

4. APPLICATIONS AND EXPERIMENTS

4.1 Sign Analysis for Java
For clarity, the previous detailed examples focused on ide-

alized languages and type systems, to most clearly illustrate
the ideas of this paper. However, the methods we have de-
scribed do scale to realistic languages. As an initial example,
we implemented a sign analysis system for the Java program-
ming language [12].

First, we developed a translator, based on the front-end
Javafe [6], that converts Java source code into a structured
Prolog term representing the program’s abstract syntax tree.
Then we implemented a set of rules for a context-insensitive
sign analysis, in about 300 lines of Prolog code, that is mod-
eled on the analysis shown in Figure 5.

We can execute this Prolog code directly, but execution
time becomes prohibitively high for large programs. Alter-
natively, we can partially evaluate the Prolog code with re-
spect to a particular target program to produce constraints
that are solvable by a monotonic satisfiability solver. For
these experiments, the Chaff solver [17] yielded excellent
(essentially linear time) performance, even though it is not
specifically focused on monotonic constraints.

To empirically evaluate the benefit of our approach, we
applied both forms of the analysis to a number of Java pro-
grams of various sizes. Figure 7 compares the time taken

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
ec

)

Lines of Code

Direct Execution
Partial Evaluation

Figure 7: This figure shows how the performance of the
Java sign analysis code scales with code size when directly
executed versus partially evaluated. Constraint solving time
was negligible in all cases, and is included in the partial
evaluation numbers.

to directly execute the Prolog code with the time taken to
partially evaluate the code and then solve the resulting con-
straints. As might be expected, direct execution scales very
poorly to large programs. In contrast, our two-phase ap-
proach based on partial evaluation provides up to two or-
ders of magnitude of performance improvement over direct
execution.

4.2 Race Condition Checking for Java
As a second application, we re-implemented the rccjava

type system [4] using this approach. The rccjava type sys-
tem extends Java’s type systems with additional checks to
ensure that every well-typed program is free of race condi-
tions. This extended type system requires additional type
annotations that specify, for example, which a lock protects
each field in the program, and which locks should be held
on entry to each method.

The original implementation of this system [4] consists
of approximately 12,000 lines of Java code (excluding the
Javafe code shared with our current translator) and required
three person-months of development effort. This implemen-
tation is focused on type checking. A subsequent separate
implementation effort tackled type inference by reducing it
to propositional satisfiability [5].

We have begun a re-implementation of this type system
as a more significant scalability test for our approach. Cur-
rently, type checking operates smoothly. So far, the effort
has taken approximately 0.25 person-months, and yielded
about 300 lines of Prolog code. Our current partial evalua-
tor cannot yet handle all of the Prolog features used in this
type system. We are working on appropriately extending
our partial evaluator to handle this type system. We also
intend to explore type inference for atomicity [7] using our
approach.

5. BEYOND PARTIAL EVALUATION
The approach described so far suffers from a performance

overhead, in that partial evaluation involves essentially in-
terpreting the type checking code, which is slower than di-
rect execution of a hand-coded constraint generator.

base_subtype(B, B).

base_subtype(int, real).

subtype_F2(base(B1), base(B2), base_subtype(B1, B2)).

subtype_F2(func(A1, B1), func(A2, B2), C):-
subtype_F2(A2, A1, C1),
subtype_F2(B1, B2, C2),
C = (C1, C2).

tc(_, int(_), base(int)).

tc(_, real(_), base(real)).

tc_F2(B, var(X), T, true):-
member(bind(X, T), B).

tc_F2(B, apply(E1, E2), T, C):-
tc_F2(B, E1, func(T1, T), C1),
tc_F2(B, E2, T2, C2),
subtype_F2(T2, T1, C3),
C = (C1, C2, C3).

tc_F2(B, lambda(X, T1, E), func(T1, T2), C):-
tc_F2([bind(X, T1)|B], E, T2, C).

tc_F2(B, if(E1, E2, E3), T, C):-
tc_F2(B, E1, base(int), C1),
tc_F2(B, E2, T2, C2),
tc_F2(B, E3, T3, C3),
subtype_F2(T2, T, C4),
subtype_F2(T3, T, C5),
C = (C1, C2, C3, C4, C5).

tc_F2(B, op(_, E1, E2), base(B3), C):-
tc_F2(B, E1, base(B1), C1),
tc_F2(B, E2, base(B2), C2),
subtype_F2(base(B1), base(B3), C3),
subtype_F2(base(B2), base(B3), C4),
C = (C1, C2, C3, C4).

Figure 8: The result of applying the staging translation to
the λsub type checker from Figure 3 (with the base subtype

predicate delayed), after α-renaming and peephole optimiza-
tion.

We can address this interpretation overhead by using the
second Futamura projection [10], which is often referred to
as a generating extension. That is, we partially evaluate
the application of the partial evaluator to the analysis code.
The residual program is then a constraint generator that
executes without any partial evaluation overhead. In more
detail, if:

peval(tc(E), C).

partially evaluates the type checking code tc over the ex-
pression E, to yield a residual constraint C over type vari-
ables in E, then the goal:

peval(peval(tc(E), C), R)

yields a Prolog program R (over E and C) that provides
a more efficient implementation of peval(tc(E), C), in
which the work of partial evaluation has already been per-
formed.

Developing a partial evaluator that is self-applicable in
this manner turns out to be quite difficult [2]. We can avoid
this difficulty by instead writing a staging transaction that

directly translates the goal tc(E) into the desired second
Futamura projection

R ≡ tc F2(E, C),

which takes as input an expression E and returns a conjunc-
tion C of delayed constraints for E.

This staging translation involves extending each user-defined
predicate P with an output parameter C that contains a con-
junction of delayed constraints. These delayed constraints
include

1. any delayed constraint called directly from P , and

2. the delayed constraints returned from any non-delayed,
user-defined predicate called from P .

Appendix B presents the code to perform this staging
translation. It takes as input a program (as a list of clauses)
and returns the second Futamura projection of that pro-
gram (again, as a list of clauses). Although quite simple,
this code is adequate for the type systems presented in this
paper, and could easily be extended to support additional
Prolog constructs.

Figure 8 shows the result of applying this staging trans-
lation to the λsub type checker from Figure 3 (with the
base subtype predicate delayed). The result is essentially
identical to a hand-coded constraint generator, but avoids
the cost of developing, debugging, and verifying the con-
straint generating code by hand.

6. RELATED WORK
A few papers have previously noted and tried to exploit

the clear connections between type inference and type check-
ing. Secher and Sørensen note that type checking is gen-
eralizable to type inference [20]. However, they base their
analysis on the use of a deterministic, functional language to
express type systems, which makes partial evaluation signif-
icantly harder. Our use of Prolog leads to code that closely
matches the type rules, and enables straightforward partial
evaluation.

Lu and King [16] also mention the connection between
type inference and type checking. They note that, to quote
the paper title, “backward type inference generalises type
checking”. However, they restrict their focus to the analysis
of logic programs, within a specific context.

Frühwirth uses partial evaluation to perform type infer-
ence for logic programs [9], and proposes the use of logic pro-
grams themselves as types [8]. Like Lu and King, Frühwirth
focuses specifically on types for logic programs.

A number of other researchers have developed systems
that serve as ideal target constraint languages. Whaley and
Lam developed a system called bddbddb, aimed at efficiently
evaluating Datalog programs using BDDs [24]. It was de-
signed for the purpose of program analysis, and would serve
as an ideal evaluation tool for our larger Datalog programs.

BANE [1] and its successor, BANSHEE [13], by Aiken
and Kodumal, provide platforms for developing type- and
set-constraint-based program analyses. These systems focus
more on solving constraints than generating them, and could
be useful as target constraint languages for our approach.

Venkatesh and Fischer’s paper on SPARE [23] describes
a general-purpose program analysis environment and dis-
cusses the sign analysis problem that we use as an example.
It might be possible to write our analyses within SPARE,

instead of Prolog, but we do not have access to a SPARE
system, and the resulting code probably would not fit the
type rules as closely as Prolog code can.

Crew, from Microsoft Research, developed a language called
ASTLOG [3] which has a Prolog-like syntax and built-in
support for extracting AST information from C programs.
It was intended mostly as tool for simple search problems,
however, and is not ideal for more complex program analyses
such as type inference.

LIX [2] is a self-applicative partial evaluator for Prolog
that provided some ideas about how to design our own par-
tial evaluator, but LIX does not provide the ability to delay
predicates in the way we need. We plan to develop more
powerful partial evaluation strategies in the future, however,
that may benefit from the more advanced features of LIX,
including its self-applicability. In addition to LIX, many
other partial evaluators exist, including Mixtus [21], Ecce
[15], and ProMiX [14].

7. CONCLUSION AND FUTURE WORK

Our work is motivated by the central role type rules play
in the development of the various algorithms related to a
type system, from checking to inference, which all proceed
by either verifying or solving the same set of constraints.
While the actual algorithm used for type checking and type
inference vary greatly, we have demonstrated that a single
natural encoding of the original type rules can be used to
derive these various analysis algorithms. Furthermore, while
our approach applies most obviously to type systems, per
se, it is also useful for program analysis problems that may
not be considered strictly type systems but have a similar
structure.

Prolog clauses provide a natural and convenient way to
encode these type rules. This code can then directly exe-
cute with any combination of specified and unspecified types
and, if computationally possible (with a finite proof tree),
infer bindings for the unspecified types. If many types are
left unspecified, however, standard Prolog search strategies
result in inefficient execution. If, instead, we identify the
operations within the type system that depend on the bind-
ings of the type variables, and use partial evaluation to de-
lay those operations, we can automatically derive a residual
constraint (in the form of a Prolog goal) over the type vari-
ables. A variety of external solvers can then efficiently solve
the resulting constraint system.

Furthermore, the second Futamura projection [10] can be
used to remove the partial evaluation overhead from the
constraint-generating phase, resulting in an automatically-
generated constraint generator that is essentially identical
to a generator that would be written by hand.

Finally, while Prolog provides an almost satisfactory lan-
guage for the description of type systems and similar pro-
gram analyses, it has some shortcomings. In particular, it
lacks a static type system of its own to detect errors at com-
pile time, and is somewhat limited in its facilities for ab-
straction. Moving to a strongly-typed logic language, such
as Mercury [22], might alleviate some of the implementa-
tion difficulties. Alternatively, a language such as Twelf [18]
or Delphin [19] might be applicable, as they were both de-
signed for the analysis of programming languages, logics,
and proofs.

Acknowledgments This work was partly supported by
the National Science Foundation under Grant CCR-03411797
and by faculty research funds granted by the University of
California at Santa Cruz.

8. REFERENCES
[1] A. Aiken, M. Fähndrich, J. S. Foster, and Z. Su. A

toolkit for constructing type- and constraint-based
program analyses. In Proceedings of the 2nd Annual
Workshop on Types in Compilation,TIC’98, July 1998.

[2] S.-J. Craig and M. Leuschel. LIX: an effective
self-applicable partial evaluator for prolog. In
Proceedings of the 7th International Symposium on
Functional and Logic Programming, FLOPS’04, Apr.
2004.

[3] R. F. Crew. ASTLOG: A language for examining
abstract syntax trees. In Proceedings of the USENIX
Conference on Domain-Specific Languages, Oct. 1997.

[4] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In Proceedings of the 2000 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’00, June 2000.

[5] C. Flanagan and S. N. Freund. Type inference against
races. In Proceedings of the 2004 Static Analysis
Symposium, SAS’04, Aug. 2004.

[6] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’02, May 2002.

[7] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’03, June 2003.

[8] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni.
Logic programs as types for logic programs. In
Proceedings of the 6th Annual IEEE Symposium on
Logic in Computer Science (LICS), pages 300–309,
1991.

[9] T. W. Frühwirth. Type inference by program
transformation and partial evaluation. In Proceedings
of the Workshop on Meta-Programming in Logic
(META’88), pages 263–282, 1988.

[10] Y. Futamura. Partial evaluation of computation
process—an approach to a compiler-compiler.
Systems, Computers, Controls, 2(5):45–50, 1971.

[11] S. Horowitz, T. Reps, and M. Sagiv. Demand
interprocedural dataflow analysis. In Proceedings of
the Third ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 104–115, 1995.

[12] B. Joy, G. Steele, J. Gosling, and G. Bracha. The
JavaTMLanguage Specification, Second Edition.
Addison-Wesley, 2000.

[13] J. Kodumal. Banshee, a toolkit for building
constraint-based analyses. PhD thesis, University of
California at Berkeley, 2002.

[14] A. Lakhotia and L. Sterling. ProMiX: a Prolog partial
evaluation system. pages 137–179.

[15] M. Leuschel. The ECCE partial deduction system. In
Proceedings of the ILPS’97 Workshop on Tools and
Environments for (Constraint) Logic Programming,
1997.

[16] L. Lu and A. King. Backward type inference
generalises type checking. In Proceedings of the 9th
International Symposium on Static Analysis, SAS’02,
Aug. 2002.

[17] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Annual Design
Automation Conference, DAC’01, June 2001.

[18] F. Pfenning and C. Schürmann. System description:
Twelf — a meta-logical framework for deductive
systems. In Proceedings of the 16th International
Conference on Automated Deduction, CADE-16, July
1999.

[19] C. Schürmann. Towards practical functional
programming with logical frameworks, July 2003.

[20] J. P. Secher and M. H. Sørensen. From checking to
inference via driving and DAG grammars. In
Proceedings of the 2002 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program
Manipulation, PEPM’02, pages 41–51. ACM Press,
Jan. 2002.

[21] D. Shalin. Mixtus: an automatic partial evaluator for
full Prolog. New Generation Computing, 12(1):7–51,
1994.

[22] Z. Somogyi, F. Henderson, and T. Conway. Mercury:
an efficient purely declarative logic programming
language. In Proceedings of the Australian Computer
Science Conference, Feb. 1995.

[23] G. A. Venkatesh and C. N. Fischer. SPARE: A
development environment for program analysis
algorithms. IEEE Transactions on Software
Engineering, 18(4), Apr. 1992.

[24] J. Whaley and M. S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In Proceedings of the 2004 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’04, June 2004.

APPENDIX

A. PARTIAL EVALUATOR

:- multifile delay/1.

:- multifile partdelay/2.

:- dynamic saved/2.

peval(P, R) :- delay(P), !, R = P.

peval((P1, P2), (R1,R2)) :-

!, peval(P1, R1), peval(P2, R2).

peval(P, R) :-

P =.. [Pred|_],

member(Pred, [member,=,true,fail,<,>]),

!, P, R = true.

peval(P, R) :-

partdelay(P, _), saved(P, _),

!, trim_goal(P, R).

peval(P, R) :-

partdelay(P, _),

clause(P, Q), peval(Q, R1),

trim_goal(P, P1),

assert(saved(P1, R1)), R = P1.

peval(P, R) :- clause(P, Q), peval(Q, R).

/* Deconstruct a predicate, remove unwanted

* parameters, and reconstruct it.

*/

trim_goal(P, R) :-

P =.. [Pred|Args],

partdelay(P, S),

crop_list(Args, S, NArgs),

R =.. [Pred|NArgs].

crop_list([], [], []).

crop_list([IH|IT], [n|ST], [IH|Rest]) :-

crop_list(IT, ST, Rest).

crop_list([_|IT], [y|ST], Rest) :-

crop_list(IT, ST, Rest).

/* Write out the Datalog program resulting

* from partial delays.

*/

write_saved :-

forall(saved(P, R),

(write(P), write(’ :- ’),

write(R), write(’.’), nl)).

B. STAGING TRANSFORMATION

stage_program([], []).

stage_program([Clause|Tail], [NewClause|NewTail]) :-

stage_clause(Clause, NewClause),

stage_program(Tail, NewTail).

stage_clause(P :- B, P :- B) :- delay(P), !.

stage_clause(P :- B, NewP :- (NewB,C=Cs)) :-

!,

P =.. [Pred|Args],

stage_term(B, NewB, Cs),

append(Args, [C], NewArgs),

atom_concat(Pred, ’_F2’, NewPred),

NewP =.. [NewPred|NewArgs].

stage_clause(C, C).

stage_term((A, B), (NewA, NewB), (AC, BC)) :-

stage_term(A, NewA, AC),

stage_term(B, NewB, BC).

stage_term(A, true, A) :- delay(A), !.

stage_term(A, A, true) :-

A =.. [Pred|_],

member(Pred, [=,member,<,>,true,fail]).

stage_term(A, NewA, Cs) :-

A =.. [Pred|Args],

atom_concat(Pred, ’_F2’, NewPred),

append(Args, [Cs], NewArgs),

NewA =.. [NewPred|NewArgs].

