
Hybrid Types, Invariants, and Refinements

For Imperative Objects

Cormac Flanagan

Department of Computer Science
University of California, Santa Cruz

Stephen N. Freund

Department of Computer Science
Williams College

Aaron Tomb

Department of Computer Science
University of California, Santa Cruz

Abstract

To control the complexity of large object-oriented systems,
objects should communicate via precisely-specified inter-
faces. Static type checking catches many interface violations
early in the development cycle, but decidability limitations
preclude checking all desired properties statically. In con-
trast, dynamic checking supports expressive specifications
but may miss errors on execution paths that are not tested.
We present a hybrid approach for checking precise object
specifications that reasons statically, where possible, but also
dynamically, when necessary. This hybrid approach supports
a rich specification language with features such as object in-
variants and refinement types.

1. Introduction

The construction and validation of large software systems is
extremely challenging. To control the complexity of such sys-
tems, they are ideally constructed as a collection of objects
that cooperate via precisely-specified interfaces. These inter-
face specifications then enable individual objects to change
and evolve without the need to understand the entire sys-
tem. Thus, a key challenge in the construction of any object-
oriented system is to precisely specify object interfaces, and
to verify (to the degree possible) that object implementa-
tions respect these interfaces.

Types can naturally describe some aspects of object inter-
faces. An advantage of these type specifications is that static
type checking can then catch many errors at compile time,
when they are cheaper to fix. However, static type check-
ing is possible only for certain kinds of specifications, and
extending the type language to support expressive specifica-
tions, such as arbitrary method preconditions and postcon-
ditions, results in a type system that is not statically decid-
able. Hence, traditional object type systems cannot express
many useful interface specifications, such as:

• The method getCount returns a positive number.
• The field i of an object is a valid index into the array in

the field a.
• This object contains a sorted list.
• The method draw expects a Point object that is within

a specified rectangle.

Other static checkers suffer from similar limitations. For
example, ESC/Java [14] may reject valid programs due to
the incompleteness of its theorem prover.

Presented at the FOOL/WOOD Workshop, January, 2006.

In contrast, precise object specifications are straightfor-
ward to check dynamically, either via assert statements [37]
or via specialized contract languages [29, 11, 24, 16, 20, 26,
34, 21]. However, dynamic checking imposes a certain per-
formance overhead. More seriously, dynamic checking only
detects errors on code paths and data values of actual exe-
cutions. Thus, dynamic checking may not catch errors un-
til very late in the development cycle, or possibly post-
deployment, when they are significantly more expensive to
fix.

In summary, decidable static type checkers provide com-
plete checking of limited specifications, while dynamic ap-
proaches provide limited coverage of expressive specifica-
tions. In this paper, we explore a hybrid approach to check-
ing expressive object specifications that combines the ad-
vantages of these prior purely-static and purely-dynamic ap-
proaches. In a nutshell, hybrid type checking involves:

1. embracing expressive type languages that can document
precise object interfaces, but which are therefore stati-
cally undecidable;

2. leveraging static type checking to detect as many errors
as possible at compile time; and

3. leveraging dynamic checking to check any remaining (not
statically verified) correctness properties at run time.

Our specification language extends an Abadi-Cardelli-
style type system [1] with refinement types and object invari-
ants. A refinement type defines a subset or refinement of an
existing type [28, 15, 8, 43, 42]. For example, the refinement
type {x : Int |x > 0} denotes the set of positive integers.
For expressiveness, our type system requires only that re-
finement predicates be pure; that is, refinement predicates
are arbitrary program expressions that do not access muta-
ble data. Each object type also has an associated predicate,
called an object invariant, which must hold on all objects of
that type.

We formalize the semantics of this expressive specifica-
tion language using a type system that is sound but necessar-
ily undecidable. To enable useful checking, we then present a
hybrid type checking algorithm with the following desirable
features:

1. The hybrid type checker statically rejects as many ill-
typed programs as possible.

2. Due to decidability limitations, the hybrid type checker
may statically accept some subtly ill-typed programs, but
it will insert sufficient dynamic casts to guarantee that
their specifications are never violated. Any attempted
specification violation is thus either caught statically

(where possible) or via dynamic checks (where neces-
sary).

3. The output of the hybrid type checker is always a well-
typed program (and so, for example, type-directed opti-
mizations are applicable).

In previous work, we explored this hybrid strategy in the
simpler context of the pure functional lambda-calculus [12,
18]. To help verify large object-oriented systems, this paper
extends these earlier ideas to a more interesting imperative
language that supports objects (with both final and mutable
methods, and imperative method update) and expressive ob-
ject specifications (with object subtyping, refinement types,
and object invariants).

This initial work studies hybrid type checking in the
context of an idealized object language, but we hope that
this work will serve as a foundation for exploring more
complex object languages and type systems. Our long term
goal is to apply hybrid type checking to realistic object-
oriented programming languages, such as Java [17], C# [10],
or Objective CAML [35].

The presentation of our results proceeds as follows. The
next section informally describes our object language and
type system. Section 3 applies this type language to docu-
ment some precise specifications. Section 4 and 5 formally
describe the operational semantics and (undecidable) type
system for this language. Section 6 presents our hybrid type
checking algorithm, and Section 7 states the key correctness
properties of our type system and compilation algorithm.
Section 8 discusses related work, and Section 9 concludes.

2. The Hoop Language

We present our approach to hybrid checking of expressive
object specifications in terms of Hoop, an idealized hybrid
object-oriented programming language based on the calculi
of Abadi and Cardelli [1]. The syntax of this language is
shown in Figure 1.

2.1 Types

We begin with an overview of the type language, since it
contains a number of features that are unusual in object
type systems, such as dependent types, refinement types,
and object invariants.

A base type B is either Bool, Int, or Unit. Since these
base types are fairly coarse and cannot, for example, express
integer subranges, we introduce refinement types such as
{x : Int |x > 0}, which denotes the set of positive integers.
More generally, the refinement type {x : B | t} denotes the
set of values c of type B that satisfy the boolean predicate
t, i.e., for which the term t[x := c] evaluates to true. We use
a base type B as an abbreviation for the refinement type
{x :B | true}.

Our refinement types are inspired by prior work on de-
cidable refinement type systems [28, 15, 8, 43, 42] but are
more expressive, which causes type checking to be undecid-
able. In particular, subtyping between two refinement types
{x :B | t1} and {x :B | t2} reduces to checking implication be-
tween the corresponding (arbitrary) refinement predicates,
which is clearly undecidable. These decidability difficulties
are circumvented by our hybrid type checking algorithm.

An object type in our language has the form

x : [li : fi · pi · (y :Ti → T
′
i)

i∈1..n
].t

This type denotes an object containing n methods with
distinct names l1..n. (As usual, fields can be encoded as

Figure 1: Syntax

s, t, u ::= Terms:
x variable
d object
v value
t.l(s) select
t.l ⇐ ς(x, y)u update
〈T 〉 t cast
let x = s in t as T binding

d ::= Objects:

x.[li(y) = ti
i∈1..n] as T object

v, w ::= Values:
c constant
a object address
a view T object view

S, T, U ::= Types:
{x :B | t} base refinement type
x : [li : fi · pi · Mi

i∈1..n].t object type

M, N ::= Method Types:
y :Ti → T ′

i method type

B ::= Unit | Bool | Int Base types:

f ::= final | mutable Final modifiers:

p ::= pure | impure Purity modifiers:

methods.) Each method li has the dependent type (y :Ti →
T ′

i), meaning that it takes an argument of type Ti, and
returns a result of type T ′

i , where the formal parameter
y may occur free in T ′

i . We abbreviate (y : Ti → T ′
i) by

(Ti → T ′
i) if y does not occur free in T ′

i . Since our type
system contains dependent types that may refer to variables,
each object type includes a binding for the self-reference
variable x (often called this) that may be mentioned in
method types. Each method li also has two method qualifiers
fi and pi.

• The method qualifier fi ∈ {final, mutable} indicates
whether the corresponding method can be updated. Ob-
ject subtyping is invariant on mutable methods, and co-
variant on immutable (or final) methods.

• The method qualifier pi ∈ {pure, impure} indicates
whether the method li is pure. Specifically, an expres-
sion is pure if its evaluation never accesses (i.e., invokes
or updates) a mutable method. Purity qualifiers are or-
dered by pure @ impure, since it is safe to consider a
pure method to be impure.

Each object type includes an object invariant t, which
is a boolean predicate over the self-reference variable x.
This object invariant is guaranteed to hold for any object
of this type, and so cannot evaluate to false. To ensure
that this guarantee holds in the presence of method updates,
we require that every object invariant be pure. Similarly,
refinement predicates must also be pure.

2.2 Terms

Hoop source terms include variables, constants, objects,
method invocation and update, casts, and let-expressions.
An object d has the form

x.[li(y) = ti
i∈1..n] as T

and consists of a collection of methods l1..n with correspond-
ing method bodies t1..n, where x and y provide bindings for
the self-reference variable and the formal parameter, respec-
tively. Each object is annotated with an explicit type T .

Constants in Hoop include boolean and integer con-
stants, as well as operations such as +, ≥, and, and not.
Although our examples use infix notation for primitive op-
erations, Hoop internally represents these primitive opera-
tions as method invocations. A cast 〈T 〉 t dynamically con-
verts (where possible) the value produced by t to type T ,
or else fails. For technical reasons, let bindings include an
explicit type annotation.

Hoop also includes object addresses a and object views
(a view T). These constructs are used to formalize the op-
erational semantics of the language, and should not appear
in source programs.

3. Examples

In this section, we illustrate our type language and hybrid
type checking through several informal examples. For read-
ability, we omit final and pure modifiers and assume meth-
ods are immutable and pure unless specified otherwise.

3.1 Refinement Types

We first introduce some useful refinements of Int:

Pos , {z :Int | z > 0}
Nat , {z :Int | z ≥ 0}

Since (z > 0) ⇒ (z ≥ 0), the expected subtype relation
Pos <: Nat holds. Similarly, since (z ≥ 0) ⇒ true, we also
have that Nat <: Int.

Subtyping between refinement types is undecidable in
general, and therefore so is type checking. For example,
consider the method update:

p.m ⇐ ς(x, y)t

where x and y provide bindings for the self-reference variable
and formal parameter, respectively. Suppose the mutable
method p.m has type Int → Nat, and that the term t has
type {z : Int | z = y2}. To check if this method update is
well-typed, the compiler needs to decide the subtype relation

{z :Int | z = y
2} <: Nat

which in turn reduces to deciding the validity of the impli-
cation:

(z = y
2) ⇒ (z ≥ 0)

If the compiler can prove this implication, then t has type
Nat (via subsumption), and so the method update is well-
typed. Conversely, if the compiler can refute this implica-
tion, then t does not have type Nat, and the compiler can
reject the program as ill-typed. (In this case, however, the
implication is valid and so cannot be refuted.)

Due to the expressiveness of the Hoop type language,
the compiler may encounter situations where its algorithms
can neither prove nor refute such implications, and so the
compiler cannot decide whether or not expressions are well-
typed. A key design question is how the compiler should

handle such situations. Optimistically accepting such pro-
grams means that type specifications cannot be trusted,
since they may be violated at run time, which is clearly unde-
sirable. Pessimistically rejecting such programs would cause
the compiler to reject some well-typed programs, which
seems too brittle for use in practice, since it would be diffi-
cult to predict which programs the compiler would accept.

Hybrid type checking handles such situations by provi-
sionally accepting the program but inserting a cast that
dynamically enforces the specification of p.m, yielding the
compiled code:

p.m ⇐ ς(x, y)(〈Nat〉 t)

This compiled code is well-typed, and it dynamically en-
sures that the specification of p.m is never violated, i.e., the
method p.m only returns natural numbers. This example
illustrates how hybrid type checking enforces precise spec-
ifications, such as Int → Nat, even if those specifications
cannot be always verified statically. In comparison, a static
type checker may be able to enforce only weaker specifica-
tions, such as Int → Int.

3.2 Pairs

We next define an object pair containing two integers and
a method that computes their sum. We assign pair a con-
ventional type Pair:

pair , p.[a = 3, b = 5, sum() = p.a + p.b] as Pair

Pair , p : [a : Int, b : Int, sum : Unit → Int].true

Although Hoop does not directly support fields, we may
encode a field of type T as a method of type Unit → T .
We abbreviate such a field type to simply T for readability.
For sum , we use the parameter name to indicate that this
value is not used in the method body.

Alternatively, we could use refinement types to specify
that the second component of the pair is not less than the
first:

OrderedPair , p :

2

4

a : Int,
b : {z :Int | z ≥ p.a},
sum : Unit → Int

3

5.true

This type specifies that if the method b terminates, it must
return an integer greater than p.a. Note that the predicate
z ≥ p.a must be pure. Our type system ensures that pure
expressions cannot access mutable data. Without this re-
striction, a program could use subtyping to hide the field b
and then break the predicate on b by modifying a. We permit
covariant subtyping of immutable fields, meaning that

OrderedPair <: Pair

An alternative definition of OrderedPair uses an object
invariant to express the ordering relation between a and b:

OrderedPair
′

, p :

2

4

a : Int,
b : Int,
sum : Unit → Int

3

5.(p.a ≤ p.b)

For any object p of this type OrderedPair
′, the object

invariant (p.a ≤ p.b) must never return false; it can only
return true, or it may diverge.1 In particular, the method
calls p.a and p.b can diverge without violating this object
invariant.

1 Allowing object invariants to diverge avoids the complexity of
reasoning about termination in the type system

We require that the invariant of a subtype imply the
invariant of its supertype. For example, since the implication
(p.a ≤ p.b) ⇒ true holds, we have that:

OrderedPair
′
<: Pair

We check invariant implication in a context in which
we know the precise type of the self-reference variable.
Thus, since for all p of type OrderedPair, the predicate
(p.a ≤ p.b) never evaluates to false, we can conclude that
true ⇒ (p.a ≤ p.b), and hence that:

OrderedPair <: OrderedPair′

Thus, subtyping allows us to move information from method
specifications to the object invariant.

One interesting difference between object invariants and
precise method specifications is that the latter can specify
the behavior of mutable methods. For example, the following
type allows the method b to be updated with any integer
that is not less than a:

MutableOrderedPair ,

p :

2

4

a : Int,
b : mutable impure {z :Int | z ≥ p.a},
sum : impure Unit → Int

3

5.true

3.3 Geometric Objects

As a final example, consider the following types for points,
rectangles, and squares:

Point , p : [x : Int, y : Int].true

Rectangle , r : [b : Point, w : Nat, h : Nat].true

Square , r : [b : Point, w : Nat, h : Nat].(r.w = r.h)

Clearly, Square <: Rectangle. The following subtype of
Point allows us to describe points must lie within a given
Rectangle r:

PtInRect(r) ,

p : [x : Int, y : Int].

„

(r.b.x) ≤ p.x ≤ (r.b.x + r.w)
∧ (r.b.y) ≤ p.y ≤ (r.b.y + r.h)

«

We can also specify a type of mutable points, and a subtype
of mutable points that must stay within a given rectangle:

MutablePoint , p :

»

x : mutable impure Int,
y : mutable impure Int

–

.true

MutablePtInRect(r) ,

p :

»

x : mut. imp. {z :Int | r.b.x ≤ z ≤ r.b.x + r.w},
y : mut. imp. {z :Int | r.b.y ≤ z ≤ r.b.y + r.h}

–

.true

The compiler will ensure that all updates to an object of type
MutablePtInRect(r) are within the specified bounds, either
via static reasoning, where possible, or else via implicit
dynamic checks, if necessary.

We can also specify more general relationships, such as
the type of all points occurring within a particular Shape,
where Shape has subtypes Rectangle and Circle, all of
which implement a contains method:

Shape , p : [contains : Point → Bool].true

Rectangle , p : [contains : Point → Bool, . . .].true

Circle , p : [contains : Point → Bool, . . .].true

The following type then characterizes points that must lie
within a particular Shape:

PtInShape(s) , p : [x : Int, y : Int].(s.contains(p))

4. Hoop Operational Semantics

We formalize the run-time behavior of Hoop programs using
the small-step operational semantics shown in Figure 2.
Evaluation is performed inside evaluation contexts, which
are defined by the grammar:

E ::= • | E .l(t) | v.l(E) | E .l ⇐ ς(x, y)u
| 〈T 〉 E | let x = E in t as T

A store σ maps object addresses a to objects d, and we
use ∅ to denote the empty store. A state (σ, t) is a pair of a
store and a term. The relation (σ, t) −→ (σ′, t′) performs a
single evaluation step, and the relation −→∗ is the transitive
closure of −→.

The first five evaluation rules are fairly straightforward.
The rule [E-Obj] adds a new object to the store at a fresh
address. The rule [E-Sel-Obj] for a method invocation a.lj(v)
extracts the method body tj from the object at address
a, and replaces the self-reference variable x and the formal
parameter y with the object address a and the argument v,
respectively. The rule [E-Upd] for a method update a.lj ⇐
ς(x, y)u replaces the method lj in the object at address a.
We use α-renaming to implicitly match the self-reference
and parameter variables of the original and new methods.
The rule [E-Let] for (let x = v in t as T) simply replaces
x by v in t.

Constants include both basic constants, such as true and
3, and primitive operations, such as not and +. Primitive
operations are actually objects with an apply method that
provides the required functionality. The prefix and infix syn-
tax for primitive operations shown in the earlier examples
is actually desugared into invocations of apply methods, as
follows:

not true , not.apply(true)

3 + 4 , +.apply((3 : Int, 4 : Int))

The desugaring for + uses the following notations for creat-
ing objects representing pair of values:

S ∗ T , x : [fst : S, snd : T].true

(v1 : S, v2 : T) , x.[fst = v1, snd = v2] as (S ∗ T)

The rule [E-Const] evaluates a method invocation c.l(v)
on a primitive operation c, and relies on the meaning func-
tion [[·]] to define the behavior of primitive operations. Specif-
ically, [[c]](l, v, σ) returns the result of invoking the method
l of the primitive operation c on the argument v in store σ.
For example, if σ(a) contains the pair (3 : Int, 4 : Int), we
have:

[[not]](apply, true, σ) = false

[[+]](apply, a, σ) = 7
[[≤]](apply, a, σ) = true

[[and]](apply, a, σ) = undefined

The rule [E-CastBase] casts a constant c to refinement
type {x : B | t} by checking that the predicate t holds on c,
i.e., that t[x := c] evaluates to true. If t[x := c] returns
false or diverges, then the cast is said to fail.

Casts on object types are more complicated, since we
need to check that every method of the resulting casted
object returns a value of the appropriate type for all possible
argument values. This check is performed in a lazy manner

Figure 2: Evaluation Rules

Evaluation (σ, t) −→ (σ′, t′)

In the following rules, we assume:

d = x.[li(y) = ti
i∈1..n] as S

S = x : [li : fi · qi · (y :Si → S′
i)

i∈1..n
].s′

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..m
].t′

T ′ = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..m
].true

a 6∈ dom(σ)

(σ, E [d]) −→ (σ[a := d], E [a])
[E-Obj]

σ(a) = d

(σ, E [a.lj(v)]) −→ (σ, E [tj[x := a, y := v]])
[E-Sel-Obj]

σ(a) = d

d′ = x.[li(y) = ti
i∈1..j−1

,
lj(y) = u,

li(y) = ti
i∈j+1..n] as S

(σ, E [a.lj ⇐ ς(x, y)u])
−→ (σ[a := d′], E [unit])

[E-Upd-Obj]

(σ, E [let x = v in t as T])
−→ (σ, E [t[x := v]])

[E-Let]

[[c]](l, v, σ) = v′

(σ, E [c.l(v)]) −→ (σ, E [v′])
[E-Const]

(σ, t[x := c]) −→∗ (σ′, true)

(σ, E [〈{x :B | t}〉 c]) −→ (σ, E [c])
[E-Cast-Base]

σ(a) = d m ≤ n qi v pi ∀i ∈ 1..m
(σ, t′[x := (a view T ′)]) −→∗ (σ′, true)

(σ, E [〈T 〉 a]) −→ (σ, E [a view T])
[E-Cast-Obj]

σ(a) = d
v′ = 〈Sj [x := a]〉 v

R = T ′
j [x := (a view T), y := v]

(σ, E [(a view T).lj(v)])
−→ (σ, E [〈R〉 (a.lj(v

′))])

[E-Sel-View]

σ(a) = d

u′ = (〈S′
j〉 (u[y := 〈Tj〉 y][x := (a view T)]))

(σ, E [(a view T).lj ⇐ ς(x, y)u])
−→ (σ, E [a.lj ⇐ ς(x, y)u′])

[E-Upd-View]

(σ, E [〈T 〉 (a view S)]) −→ (σ, E [〈T 〉 a])
[E-Cast-View]

via object views. An object view “(a view T)” is a wrapper
that ensures that the object σ(a) behaves according to
the specification of type T . Views are introduced by the
rule [E-Cast-Obj], which evaluates the cast 〈T 〉 a to the
view (a view T). In addition, this rule checks that the object

σ(a) has all the methods mentioned in T (with compatible
modifiers), and that the object invariant of T holds on σ(a).

We define special evaluation rules for method invocation
and update on views. These rules lazily enforce typing re-
strictions on method parameters and results by performing
appropriate checks on method invocations and updates. The
rule [E-Sel-View] for a view invocation (a view T).lj(v) re-
trieves the type S of a, which may be quite different from
the view type T :

S = x : [li : fi · qi · (y :Si → S′
i)

i∈1..n
].s′

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..m
].t′

The rule reduces the view invocation (a view T).lj(v) to the
following method invocation, which contains two additional
casts to ensure type safety:

〈T ′
j [x := (a view T), y := v]〉 (a.lj(〈Sj [x := a]〉 v))

The cast 〈Sj [x := a]〉 v transforms the argument v of type
Tj to a value of the expected argument type Sj , where
self-reference variable x is replaced by object’s address a.
The cast 〈T ′

j [x := (a view T), y := v]〉 (. . .) transforms the
method result into the expected type T ′

j , where self-reference
variable x and formal parameter y are replaced by original
view (a view T) and original argument v, respectively.

These two casts ensure that method invocations on object
views preserve type safety. To illustrate this guarantee,
suppose:

σ(a) = x.[fact(y) = . . .] as Fact

Fact , x : [fact : Nat → Nat].true

BadFact , x : [fact : Int → Nat].true

and consider the term (〈BadFact〉 a).fact(−3), which at-
tempts to use the BadFact view to circumvent the Fact

specification of the object σ(a). This term evaluates to
〈Nat〉 (a.fact(〈Nat〉 −3)), at which point the cast (〈Nat〉 −3)
fails. Thus, the casts inserted by [E-Sel-View] enforce the
specification of the fact method, which states that fact
should be applied only to natural numbers.

The rule [E-Upd-View] reduces a view update

(a view T).lj ⇐ ς(x, y)u

to a normal method update

a.lj ⇐ ς(x, y)u′

where u′ is the following modified version of u with addi-
tional casts:

u
′ = (〈S′

j〉 (u[y := 〈Tj〉 y][x := (a view T)]))

Here, the formal parameter y in u is replaced with 〈Tj〉 y,
which is guaranteed to be of the appropriate type Tj , even
though y itself may not be. Similarly, the self-reference
variable x is replaced with the view (a view T), which is
of the expected type T , even though a may not be.2 Finally,
the result of u is cast to type S′

j , which is the return type
expected by (non-view) invocations of a.lj .

The rule [E-Cast-View] evaluates 〈T 〉 (a view S) to 〈T 〉 a;
thus, the original view is discarded when cast to a different
view.

In summary, casts allow the program to claim that a
value of one type can be safely considered to be of another
type, and the operational semantics performs sufficient run-
time checking to detect if this claim is ever violated. This

2 The alternative of substituting (〈T 〉 x) for x would require
redundant re-evaluation of T ’s object invariant.

ability to perform dynamic casts is crucial for enabling
our hybrid type checking algorithm to convert particularly
difficult static checks into dynamic checks, when necessary.

5. The Hoop Type System

We next present the (undecidable) type system for the Hoop

language as the collection of the type judgments and rules
shown in Figures 3 and 4. Type environments are a sequence
of variable-type bindings, and we assume that the variables
bound in an environment are distinct.

E ::= ∅ | E, x : T

The judgment E ` t : T & p states that the term t has
type T and purity p in environment E. This judgment is
defined by the following rules:

• The rule [T-Var] states that variable accesses are always
pure, since variables are immutable.

• The rule [T-Obj] deals with object creation, and checks
that each method has the appropriate result type and pu-
rity. In addition, a mutable method is considered impure,
since any call to that method must be impure. Newly-
created objects must have the trivial invariant true. A
stronger invariant can later be added via subtyping or
casting.

• The rule [T-Let] for let x = t1 in t2 as T requires that
the type T of t2 must be well-formed in the environment
without x, in order to prevent x from escaping its scope.

• The rule [T-Sel] for a method invocation t.lj(u) checks
that the method lj has type y : Tj → T ′

j , and that the
argument u has type Tj [x := t]. The type of the method
call is then T ′

j [x := t, y := u], where the self-reference
variable x and the formal parameter y are replaced by
the object t and the actual parameter u, respectively.

Since the terms t and u may appear in the resulting
type, these terms must be pure. Note that if one of these
terms, say t, is not pure, the method call t.lj(u) can be
refactored into (let x = t in x.lj(u) as R), provided the
explicit result type R does not mention x.

• The rule [T-Upd] for a method update checks that the
updated method is mutable and that the new method
body has the appropriate type and purity.

• The rule [T-Const] assigns the type ty(c) to each con-
stant c. Basic constants have precise refinement types,
such as:

true : {b :Bool | b}
false : {b :Bool | not b}

n : {m :Int |m = n}
Primitive operations are assigned object types that pre-
cisely characterize their behavior. For example, the fol-
lowing type for + states that the method +.apply takes
two integer arguments, which are passed in the fst and
snd fields of the pair object y, and that the method result
is an integer r that is equal to (y.fst + y.snd).

+ : x :

»

apply :

„

y : (Int ∗ Int) →
{r :Int | r = y.fst + y.snd}

«–

.true

⇔ : x :

»

apply :

„

y : (Bool ∗ Bool) →
{r :Bool | r ⇔ (y.fst ⇔ y.snd)}

«–

.true

not : x :

»

apply :

„

y : Bool →
{r :Bool | r ⇔ not y}

«–

.true

= : x :

»

apply :

„

y : (Int ∗ Int) →
{r :Bool | r ⇔ (y.fst = y.snd)}

«–

.true

Figure 3: Type Rules

Type Rules for Terms E ` t : T & p

(x : T) ∈ E

E ` x : T & pure
[T-Var]

E ` T

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].true

fi = mutable ⇒ pi = impure ∀i ∈ 1..n
E, x : T, y : Ti ` si : T ′

i & pi ∀i ∈ 1..n

E ` (x.[li(y) = si
i∈1..n] as T) : T & pure

[T-Obj]

E ` t1 : S & p1

E, x : S ` t2 : T & p2

E ` T

E ` let x = t1 in t2 as T : T & (p1 t p2)
[T-Let]

E ` t : T & pure

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].s

E ` u : Tj [x := t] & pure j ∈ 1..n

E ` t.lj(u) : T ′
j [x := t, y := u] & pj

[T-Sel]

E ` t : T & p

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].s

j ∈ 1..n fj = mutable

E, x : T, y : Tj ` u : T ′
j & pj

E ` t.lj ⇐ ς(x, y)u : Unit & impure
[T-Upd]

E ` c : ty(c) & pure
[T-Const]

E ` t : S & p E ` T

E ` 〈T 〉 t : T & p
[T-Cast]

E ` t : S & q E ` S <: T q v p

E ` t : T & p
[T-Sub]

Type Rules for Types E ` T

E, x : B ` t : Bool & pure

E ` {x :B | t} [T-Base]

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].t

Sk = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..k
].true

E, x : Sj−1 ` Tj ∀j ∈ 1..n
E, x : Sj−1, y : Tj ` T ′

j ∀j ∈ 1..n
E, x : Sn ` t : Bool & pure

E ` T
[T-ObjTy]

The apparent circularity where the type of + is defined
in terms of + itself does not cause any technical diffi-
culties in our development, since the meaning of the re-
finement predicate is defined in terms of the operational
semantics, and hence in terms of the meaning function
[[+]].

• The rule [T-Cast] allows a term of inferred type S to be
cast to any other (well-formed) type T . Note that this
cast may fail at run time.

Figure 4: Subtyping

Subtyping E ` S <: T

E, x : B ` s ⇒ t

E ` {x :B | s} <: {x :B | t} [S-Base]

S = x : [li : fi · qi · Mi
i∈1..n].s

T = x : [li : fi · pi · Ni
i∈1..m].t

m ≤ n qi v pi ∀i ∈ 1..m
fi = final

⇒ E, x : S ` Mi <: Ni ∀i ∈ 1..m
fi = mutable

⇒ E, x : S ` Mi = Ni ∀i ∈ 1..m
E, x : S ` s ⇒ t

E ` S <: T
[S-Obj]

Method Subtyping E ` M <: N

E ` Ti <: Si E, y : Ti ` S′
i <: T ′

i

E ` (y :Si → S′
i) <: (y :Ti → T ′

i)
[M-Sub]

Method Equality E ` M = N

E ` M <: N E ` N <: M

E ` M = N
[M-Equal]

Implication E ` s ⇒ t

∀θ. (E |= θ ∧ (∅, θ(t)) −→∗ (σ, false))
⇒ (∅, θ(s)) −→∗ (σ′, false)

E ` s ⇒ t
[Imp]

Consistent Substitutions E |= θ

∅ |= ε
[Sub-Empty]

∅ ` t : T & pure

E[x := t] |= [yi := ti
i∈1..n]

x : T, E |= [x := t, yi := ti
i∈1..n]

[Sub-Ext]

Well-formed environments ` E

` ∅ [WE-Empty]

` E E ` T

` E, x : T
[WE-Ext]

• The rule [T-Sub] allows the inferred type S of a term to
be weakened to any super type T .

The judgment E ` T checks that the type T is well-formed
in environment E.

• The rule [T-Base] states that refinement predicates must
have type Bool and be pure.

• The rule [T-ObjTy] states that object invariants must
have type Bool and be pure, and that each method type
can only refer to methods declared earlier in the object.

The most interesting part of our type system concerns
the rules that define the subtyping judgment E ` S <: T
in Figure 4. This subtyping judgment is complicated by the
expressiveness of refinement predicates and object invari-
ants, and it is defined in terms of the implication judgment
E ` s ⇒ t. Essentially, this implication judgment holds if
whenever the term t evaluates to false, the term s must
also evaluate to false. More formally, we define a substi-
tution θ (from variables to terms) to be consistent with an
environment E if θ maps variables to terms in a manner that
is consistent with the type bindings in E. The implication
judgment E ` s ⇒ t then holds if for all substitutions θ con-
sistent with E such that θ(t) evaluates to false, it follows
that θ(s) also evaluates to false.

Subtyping between refinement types then reduces to an
implication judgment between the refinement predicates, via
the rule [S-Base]. Subtyping between two object types S
and T is covariant on immutable methods and invariant on
mutable methods. Subtyping also involves checking impli-
cation between object invariants. Note that this implica-
tion check is performed in an environment where the self-
reference variable has type S. This binding allows subtyping
to refactor type information from method types to the ob-
ject invariant. For example, suppose:

S = x : [m : {z :Int | z ≥ 0}].true
T = x : [m : Int].(x.m ≥ 0)

Clearly, if the variable x has type S, then the object invariant
(x.m ≥ 0) returns true, or else diverges. Hence:

x : S ` true ⇒ (x.m ≥ 0)

and so ∅ ` S <: T . This subtyping judgment has the effect
of refactoring information about the method m from the
method type to the object invariant.

6. Hybrid Type Checking

Given that type checking is undecidable, we now present
a decidable compilation strategy for Hoop programs. This
compilation strategy ensures (by inserting dynamic checks,
if necessary) that specifications can never be violated at run
time, and it statically rejects clearly ill-typed programs.

The compilation strategy relies on an algorithm to con-
servatively approximate the logical implication judgment
E ` s ⇒ t. The result of this algorithm is denoted as:

E `a
alg s ⇒ t

where the mode a ∈ {√,×, ?} indicates whether or not
the algorithm is successful at verifying or refuting the given
implication. In particular,

• E `
√

alg s ⇒ t means the algorithm successfully deter-
mines that E ` s ⇒ t.

• E `×
alg s ⇒ t means the algorithm determines that the

implication does not hold, i.e., E 6` s ⇒ t.

• E `?
alg s ⇒ t means the algorithm fails to either prove

or disprove that E ` s ⇒ t.

However, we do not require that the algorithm be com-
plete. For example, the trivial algorithm that always returns
“?” satisfies our requirements, although it precludes per-
forming any interesting reasoning in the compiler.

Figure 5: Algorithmic Subtyping

Algorithmic Subtyping E `a
alg S <: T

E, x : B `a
alg s ⇒ t

E `a
alg {x :B | s} <: {x :B | t} [AS-Base]

S = x : [li : fi · qi · Mi
i∈1..n].s

T = x : [li : fi · pi · Ni
i∈1..m].t

m ≤ n qi v pi ∀i ∈ 1..m
fi = final

⇒ E, x : S `ai

alg Mi <: Ni ∀i ∈ 1..m

fi = mutable

⇒ E, x : S `ai

alg Mi = Ni ∀i ∈ 1..m

E, x : S `a
alg s ⇒ t

a′ = a ⊗ a1 ⊗ . . . ⊗ am

E `a′

alg S <: T
[AS-Obj]

Algorithmic Method Subtyping E `a
alg M <: N

E `a
alg Ti <: Si E, y : Ti `a′

alg S′
i <: T ′

i

E `(a⊗a′)
alg (y :Si → S′

i) <: (y :Ti → T ′
i)

[AM-Sub]

Algorithmic Method Equality E `a
alg M = N

E `a
alg M <: N E `a′

alg N <: M

E `(a⊗a′)
alg M = N

[AM-Equal]

Figure 5 defines algorithmic subtyping and algorith-
mic type equality in terms of this implication algorithm.
These rules closely match the corresponding rules in the
type system. For example, algorithmic subtyping for base
types directly reduces to an algorithmic implication test
via [AS-Base]. For subtyping between object types, the rule
[AS-Obj] uses the rules [AM-Sub] and [AM-Equal] to ensure
the appropriate relationship between corresponding method
types, and uses the implication algorithm to check implica-
tion of object invariants. As with algorithmic implication,
algorithmic subtyping may not always yield a definitive an-
swer. If all sub-tests succeed (or at least one sub-test fails)
then the algorithm can conclude with certainty that subtyp-
ing does (or does not) hold. In other situations, the result of
the whole test is uncertain. We use the 3-valued conjunction
operator ⊗ to compute the result of a subtype test based
on the results of its subtests:

⊗ √ × ?√ √ × ?
× × × ×
? ? × ?

We now define the hybrid compilation judgment

E ` s ↪→ t : T & p

which compiles the term s into the term t, which has type T
and purity p. The compilation rules type check the program
s and insert additional type casts to compensate for indef-
inite answers returned by the subtyping algorithm, yield-
ing the compiled program t. Successful compilation does not
guarantee that the source program s is well-typed. However,

Figure 6: Compilation Rules

Compilation of Terms E ` s ↪→ t : T & p

(x : T) ∈ E

E ` x ↪→ x : T & pure
[C-Var]

E ` S ↪→ T

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].true

fi = mutable ⇒ pi = impure ∀i ∈ 1..n
E, x : T, y : Ti ` si ↪→ ti ↓ T ′

i & pi ∀i ∈ 1..n

E ` (x.[li(y) = si
i∈1..n] as S)

↪→ (x.[li(y) = ti
i∈1..n] as T) : T & pure

[C-Obj]

E ` s1 ↪→ t1 : T & pure

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].t′

E ` s2 ↪→ t2 ↓ Tj [x := t] & pure j ∈ 1..n

E ` s1.lj(s2)
↪→ t1.lj(t2) : T ′

j [x := t1, y := t2] & pj

[C-Sel]

E ` s ↪→ t : T & p

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].t′

j ∈ 1..n fj = mutable

E, x : T, y : Ti ` u ↪→ u′ ↓ T ′
j & pj

E ` (s.lj ⇐ ς(x, y)u)
↪→ (t.lj ⇐ ς(x, y)u′) : Unit & impure

[C-Upd]

E ` c ↪→ c : ty(c) & pure
[C-Const]

E ` s ↪→ t : U & p E ` S ↪→ T

E ` 〈S〉 s ↪→ 〈T 〉 t : T & p
[C-Cast]

E ` s1 ↪→ t1 : U & p1

E ` S ↪→ T
E, x : U ` s2 ↪→ t2 ↓ T & p2

E ` (let x = s1 in s2 as S)
↪→ (let x = t1 in t2 as T) : T & (p1 t p2)

[C-Let]

Compilation of Types E ` T ↪→ T ′

E, x : B ` s ↪→ t : {y :Bool |u} & pure

E ` {x :B | s} ↪→ {x :B | t} [C-Base]

S = x : [li : fi · pi · (y :Si → S′
i)

i∈1..n
].s

Uk = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..k
].true

T = x : [li : fi · pi · (y :Ti → T ′
i)

i∈1..n
].t

E, x : Uj−1 ` Sj ↪→ Tj ∀j ∈ 1..n
E, x : Uj−1, y : Tj ` S′

j ↪→ T ′
j ∀j ∈ 1..n

E, x : Un ` s ↪→ t : {y :Bool |u} & pure

E ` S ↪→ T
[C-ObjTy]

Compilation and Checking E ` s ↪→ t : T & p

E ` s ↪→ t : S & q E `
√

alg S <: T q v p

E ` s ↪→ t ↓ T & p
[CC-Ok]

E ` s ↪→ t : S & q E `?
alg S <: T q v p

E ` s ↪→ (〈T 〉 t) ↓ T & p
[CC-Chk]

if s is well-typed, then all dynamic casts inserted into t will
succeed. If s is not well-typed, then execution of t may po-
tentially halt due to the failure of a compiler-inserted cast.
We extend compilation to types as well, since they contain
terms.

The full set of compilation rules is shown in Figure 6.
Many of these rules are straightforward. Variable refer-
ences and constants never need additional casts, as evi-
denced by rules [C-Var] and [C-Const]. To compile an object
(x.[li(y) = si

i∈1..n] as S), the rule [C-Obj] first compiles the
object type S into type

T = x : [li : fi · pi · (y :Ti → T
′
i)

i∈1..n
].true

and then compiles each method body si into ti, which must
have type y :Ti → T ′

i .
We use the compilation and checking judgment

E ` s ↪→ t ↓ T & p

to both compile s into t and to ensure that t has type T
(and purity p). The rules defining this judgment exhibit the
key ideas behind hybrid type checking for objects. After
compiling the term s into t (with type S), the subtyping
algorithm E `a

alg S <: T is used to check if S is a subtype
of T .

- If the subtyping algorithm succeeds (i.e., E `
√

alg S <: T),
then no casts are needed: see [CC-Ok].

- If the subtyping algorithm disproves this subtyping re-
quirement (i.e., E `×

alg S <: T), the program fails to
compile, since no compilation rule is applicable.

- If the subtyping algorithm cannot either prove or refute
this subtyping requirement (i.e., E `?

alg S <: T), then a
dynamic cast from S to T is inserted around t via the
rule [CC-Chk].

Ideally, the subtyping algorithm will be sufficiently complete
to handle most cases definitively and casts will be inserted
rarely. However, this crucial ability to add casts permits our
compiler to support an unusually expressive object specifi-
cation language.

The compiler compiles types wherever they are found
in the source program (i.e., in [C-Cast] and [C-Obj]), to
ensure that all types mentioned in the compiled program are
well-formed, and that all environments constructed during
compilation are well-formed.

7. Correctness

In this section, we establish important correctness proper-
ties of the Hoop type system and the hybrid compilation
algorithm.

7.1 Correctness of the Type System

We first extend the type system to run-time states, which
contain an object store as well as object addresses and object
views. In particular, we extend each typing judgment to
include an object store σ, resulting in the extended judgment
forms:

σ; E ` t : T & p σ; E ` T σ;E ` S <: T
σ; E ` M = N σ; E ` M <: N
σ; E ` s ⇒ t σ; E |= θ

Most of the extended type rules are identical to the original
rules, except that they pass the additional store argument
σ to their antecedents. The only exception is the following

rule [Imp], which uses the store σ when evaluating implica-
tion predicates:

∀θ. (σ; E |= θ ∧ (σ, θ(t)) −→∗ (σ′, false))
⇒ (σ, θ(s)) −→∗ (σ′′, false)

σ; E ` s ⇒ t
[Imp]

We introduce two new rules for checking object addresses
and object views:

σ(a) = x.[. . .] as T

σ; E ` a : T & pure
[T-Obj-Ref]

σ(a) = x.[li(y) = ti
i∈1..n] as S

S = x : [li : fi · qi · Mi
i∈1..n].s

T = x : [li : fi · pi · Ni
i∈1..m].t

T ′ = x : [li : fi · pi · Ni
i∈1..m].true

m ≤ n qi v pi ∀i ∈ 1..m

(σ, t[x := (a view T ′)]) −→∗ (σ′, true)

σ; E ` a view T : T & pure
[T-Obj-View]

Finally, we add rules for typing stores and states:

dom(σ) = {a1, . . . , an}
σ(ai) = x.[. . .] as Si ∀i ∈ 1..n

σ; ∅ ` σ(ai) : Si & pure

` σ
[T-Store]

` σ σ; ∅ ` t : T & p

` (σ, t) : T
[T-State]

We assume that the type of each primitive operation is
consistent with its operational behavior.

Assumption 1 (Types of Primitives). If ` (σ, c.l(v)) : T
and [[c]](l, v, σ) = v′ then ` (σ, v′) : T .

The extended type system then satisfies the preservation
or subject reduction property [41]. The type system also
satisfies the progress property (i.e., the evaluation of well-
typed programs does not halt prematurely), with the caveat
that type casts may fail. A state (σ, E [〈T 〉 v]) has a failed
cast if it cannot be reduced via the rules [E-Cast-Base],
[E-Cast-Obj], or [E-Cast-View]. Both theorems follow by
induction over typing derivations.

Theorem 2 (Preservation). If ` (σ, s) : T and (σ, s) −→
(σ′, t) then ` (σ′, t) : T .

Theorem 3 (Progress). All closed well-typed normal forms
are values or contain a failed cast.

7.2 Correctness of Hybrid Type System

We now describe the correctness properties of our hybrid
type system. We assume that the implication algorithm is a
sound approximation of the implication judgment:

Assumption 4 (Soundness of E `a
alg s ⇒ t). Suppose ` E.

1. If E `
√

alg s ⇒ t then E ` s ⇒ t.

2. If E `×
alg s ⇒ t then E 6` s ⇒ t.

Given this assumption, our subtyping algorithm is sound:

Lemma 5 (Soundness of E `a
alg S <: T). Suppose ` E.

1. If E `
√

alg S <: T then E ` S <: T .

2. If E `×
alg S <: T then E 6` S <: T .

Proof: By induction over algorithmic subtyping deriva-
tions. �

Also, the compilation algorithm inserts sufficient dy-
namic type casts to compensate for the inherent imprecisions
of the subtyping algorithm, which ensures that compiled
programs are always well-typed.

Theorem 6 (Compiled Programs Are Well-typed). Suppose
` E.

1. If E ` s ↪→ t : T & p then E ` t : T & p.

2. If E ` s ↪→ t ↓ T & p and E ` T then E ` t : T & p.

3. If E ` S ↪→ T then E ` T .

Proof: By induction over compilation derivations. �

An immediate consequence of this lemma, when com-
bined with Theorem 3 (Progress), is that compiled programs
only halt prematurely due to failed casts. Such casts may be
explicit in the original program or implicitly inserted by the
compiler. Thus, for some subtle specification violations, hy-
brid type checking may only catch these errors via cast fail-
ures at run time. However, we argue that this precise hybrid
approach may be superior to using a coarser type language
that could not express subtle specifications at all.

8. Related Work

Much prior work has focused on dynamic checking of ex-
pressive specifications, or contracts [29, 11, 24, 16, 20, 26,
34, 21]. An entire design philosophy, Contract Oriented De-
sign, has been based on dynamically-checked specifications.
Hybrid type checking extends these prior purely-dynamic
approaches by verifying (or detecting violations of) expres-
sive specifications statically, wherever possible.

The programming language Eiffel [29] supports a notion
of hybrid specifications by providing both statically-checked
types as well as dynamically-checked contracts. Having sep-
arate (static and dynamic) specification languages is awk-
ward, since it requires the programmer to factor each spec-
ification into its static and dynamic components. Further-
more, the specification may need to be manually refactored
to exploit improvements in static checking technology.

Our work shares similar motivations with, and is partly
inspired by, recent work on advanced type systems, includ-
ing work on refinement types [15, 28, 8] and practical depen-
dent types [43, 42]. However, the requirement for full static
decidability limits the expressiveness of these prior systems.
Hybrid type checking side-steps these decidability difficulties
by being willing to check correctness properties dynamically
when necessary.

The static checking tool ESC/Java [14] supports expres-
sive JML specifications [24] and leverages powerful auto-
matic theorem proving techniques. However, ESC/Java’s
underlying theorem prover, Simplify [9], does not distinguish
between failing to prove a theorem and finding a counter-
example that actually refutes the theorem. Consequently,
ESC/Java may produce error messages that are caused by
limitations in its theorem prover. In contrast, hybrid type
checking only produces error messages for programs it can
prove are ill-typed.

Abadi and Leino [3] developed and proved the sound-
ness of a Hoare-style logic for reasoning about pre- and
post-conditions in an imperative object language. As with
ESC/Java, this logic reduces program correctness to the-
orem proving, which is undecidable. Others have explored

various semantic models [36] and extensions [19] to the
Abadi-Leino system. Extending our work to support an im-
perative object language would require studying a number
of additional verification issues, such as frame conditions [6]
and aliasing/ownership [7, 31], that arise in an imperative
setting.

There have been a number of projects focused on re-
finement of specifications and subtyping. These include the
work of Liskov and Wing [25], Leavens [23], Lano and
Haughton [22], and others. Our notion of subtyping is sim-
pler than many of these studies, and does not, for example,
include data abstraction. One interesting avenue for future
work is to explore these richer notions of subtyping and ab-
straction in the context of hybrid type checking.

The limitations of purely-static and purely-dynamic ap-
proaches have also motivated other work on hybrid analyses.
For example, CCured [30] is a hybrid analysis for prevent-
ing array bounds violations. Unlike our proposed approach,
it does not detect errors statically - instead, the static anal-
ysis is used to optimize the run-time analysis. Specialized
hybrid analyses have been proposed for other problems as
well, such as race condition checking [39, 32, 4].

Recently, Ou et al presented a system leveraging depen-
dent types and run-time checks [33], although their system
does not include objects. In contrast to Hoop, their type
system is decidable and leverages dynamic checks to reduce
the need for precise type annotations in explicitly labeled
regions of programs.

The interaction between static typing and dynamic
checks has been previously studied in context of flexible
type systems with types such as the type Dynamic, which
can be converted to other types [2]. Quasi-static typing [38]
automatically inserts the necessary coercions, in a manner
similar to soft typing [27, 40, 5, 13]. This work is intended
to support looser type specifications. In contrast, our work
uses similar, automatically-inserted casts to support more
precise type specifications. An interesting avenue for fur-
ther exploration is the combination of both approaches to
support a very large range of specifications, from Dynamic

(no static type information) at one extreme to very precise
hybrid-checked specifications at the other.

9. Conclusions and Future Work

This paper presents a hybrid type system that permits
programmers to specify object interfaces precisely, using
object invariants and type refinements, and to delegate to
the hybrid compiler decisions regarding which parts of these
specifications can be checked statically, and which must be
checked dynamically. A number of issues remain for future
work, including experimental validation.

The desire for static decidability has often constrained
traditional object type systems. We believe that hybrid type
checking may facilitate the design of programming languages
around expressive type systems that balance safety with
flexibility, and whose undecidability need not limit their
practicality.

Acknowledgments This work was supported by the Na-
tional Science Foundation under Grants CCR-0341179 and
CCR-0341387. We thank Mart́ın Abadi for helpful com-
ments on this work.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag, 1996.

[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically-typed language. In Proceedings of the
ACM Symposium on Principles of Programming Languages,
pages 213–227, 1989.

[3] M. Abadi and K. R. M. Leino. A logic of object-oriented
programs. In Verification: Theory and Practice, pages 11–
41, 2003.

[4] R. Agarwal and S. D. Stoller. Type inference for parame-
terized race-free Java. In Proceedings of the Conference on
Verification, Model Checking, and Abstract Interpretation,
pages 149–160, 2004.

[5] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages
163–173, 1994.

[6] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame
problem in procedure specifications. IEEE Trans. Software
Eng., 21(10):785–798, 1995.

[7] J. Boyland, J. Noble, and W. Retert. Capabilities for
sharing: A generalisation of uniqueness and read-only. In
Proceedings of the European Conference on Object Oriented
Programming, pages 2–27, 2001.

[8] R. Davies and F. Pfenning. Intersection types and compu-
tational effects. In Proceedings of the ACM International
Conference on Functional Programming, pages 198–208,
2000.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[10] ECMA. Standard ECMA-334: C# Language Specifi-
cation (3rd edition), 2005. Available on the web as
http://www.ecma-international.org/publications/-
files/ecma-st/Ecma-334.pdf.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In Proceedings of the International Conference
on Functional Programming, pages 48–59, 2002.

[12] C. Flanagan. Hybrid type checking. In Proceedings of the
ACM Symposium on Principles of Programming Languages,
2006.

[13] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and
M. Felleisen. Finding bugs in the web of program invariants.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 23–32, 1996.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for Java.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 234–245, 2002.

[15] T. Freeman and F. Pfenning. Refinement types for ML.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 268–277, 1991.

[16] B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter.
A language manual for Sather 1.1, 1996.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification (3rd Edition). Addison-Wesley,
2005.

[18] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and
C. Flanagan. Sage: Practical hybrid checking for
expressive types and specifications, extended report.
http://www.soe.ucsc.edu/~cormac/papers/sage-full.ps,
to appear, 2005.

[19] M. Hofmann and F. Tang. Implementing a program logic of
objects in a higher-order logic theorem prover. In Proceedings
of the Conference on Theorem Proving in Higher Order
Logics, pages 268–282, 2000.

[20] R. C. Holt and J. R. Cordy. The Turing programming
language. Communications of the ACM, 31:1310–1424,
1988.

[21] M. Kölling and J. Rosenberg. Blue: Language specification,
version 0.94, 1997.

[22] K. Lano and H. P. Haughton. Reasoning and refinement in
object-oriented specification languages. In Proceedings of
the European Conference on Object Oriented Programming,
pages 78–97, 1992.

[23] G. T. Leavens. Reasoning about Object-Oriented Programs
that Use Subtypes. PhD thesis, Massachusetts Institute of
Technology, 1989.

[24] G. T. Leavens and Y. Cheon. Design by contract with JML,
2005. avaiable at http://www.cs.iastate.edu/~leavens/JML/.

[25] B. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages
and Systems, 16(6):1811–1841, 1994.

[26] D. Luckham. Programming with specifications. Texts and
Monographs in Computer Science, 1990.

[27] M. Fagan. Soft Typing. PhD thesis, Rice University, 1990.

[28] Y. Mandelbaum, D. Walker, and R. Harper. An effective
theory of type refinements. In Proceedings of the Inter-
national Conference on Functional Programming, pages
213–225, 2003.

[29] B. Meyer. Object-oriented Software Construction. Prentice
Hall, 1988.

[30] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-
safe retrofitting of legacy code. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages
128–139, 2002.

[31] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
Proceedings of the European Conference on Object Oriented
Programming, pages 158–185, 1998.

[32] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In ACM Symposium on Principles and Practice
of Parallel Programming, pages 167–178, 2003.

[33] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic
typing with dependent types. In IFIP International
Conference on Theoretical Computer Science, pages 437–
450, 2004.

[34] D. L. Parnas. A technique for software module specification
with examples. Communications of the ACM, 15(5):330–
336, 1972.

[35] D. Rémy and J. Vouillon. Objective ML: An effective object-
oriented extension to ML. Theory And Practice of Object
Systems, 4(1):27–50, 1998.

[36] B. Reus and J. Schwinghammer. Denotational semantics
for Abadi and Leino’s logic of objects. In Proceedings of
the European Symposium on Programming, pages 263–278,
2005.

[37] D. S. Rosenblum. A practical approach to programming with
assertions. IEEE Transactions on Software Engineering,
21(1):19–31, 1995.

[38] S. Thatte. Quasi-static typing. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages
367–381, 1990.

[39] C. von Praun and T. Gross. Object race detection. In
Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages
70–82, 2001.

[40] A. Wright and R. Cartwright. A practical soft type system
for scheme. In Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 250–262, 1994.

[41] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Info. Comput., 115(1):38–94, 1994.

[42] H. Xi. Imperative programming with dependent types. In
Proceedings of the IEEE Symposium on Logic in Computer
Science, pages 375–387, 2000.

[43] H. Xi and F. Pfenning. Dependent types in practical
programming. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 214–227, 1999.

