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Abstract

Visualization Techniques for Computational Mechanics

by

Alisa Gail Neeman

Scientists and engineers use visualization techniques to turn the numerical results from a

solid or fluid mechanics simulation into interactive graphics that help them understand

the results. This work provides visualization techniques for stress, strain (second-order

tensor fields) and stiffness (fourth-order tensor fields). The techniques are applied to

data from Geomechanics, a branch of civil engineering focused on predicting how earth-

quakes affect soil and infrastructure such as buildings and bridges. The resulting visu-

alizations help illustrate the state of the simulation and facilitate prediction of solids’

failure under stress. The main contributions in this work include (i)a decomposition

method to reduce fourth-order tensors to second-order which highlight features of inter-

est, (ii) a new visualization technique for second-order tensors, and (iii) an open source

visualization application that facilitates finding critical regions of a solid volume and

details within those regions.
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Chapter 1

Introduction

One unsolved problem for the mechanics of solids and structures is visualizing

tensor data. Civil, mechanical, aeronautical, biomedical, material and other branches

of engineering dealing with modeling and simulation produce tensor data during design,

test, and research. The particular focus and application of this work is visualization for

Geomechanics, a branch of civil engineering concerned with the behavior of geomaterials.

However, the results are broadly applicable.

To date, the breadth of visualization technique research for solid (non-fluid)

mechanics tensor data has been limited. The tensors are non-positive-definite and some

features of interest are unique to the domain.Meanwhile, the techniques (formulations,

algorithms and implementations) for computational modeling and simulation of mate-

rials have advanced at a rapid pace. While the simulation results are now available, the

pictures that will help in understanding those results are absent. (Until now, engineers

have mainly used a stress-strain curves to illustrate detail or color mapped scalar fields.)
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Moreover, civil engineering design has evolved in such a way that behavior of critical

parts of solids and structures depend on the specific materials and/or components used

in an object. Finally, civil engineering materials are loading-history dependent; that is,

their behavior is a function of their previous loading history. For example, soils that

have been previously compressed will be much stiffer than those not compressed in their

loading history. This dimension adds an additional challenge to presenting the most in-

teresting and important parts of the data in a way that is useful and understandable to

a wide audience of practicing engineers, researchers, and students.

1.1 Main Contributions

The main work addresses a specific need for the visualization of solids and

structures: a representation for the governing equation or constitutive relation. The

constitutive relation represents the relationship between applied stress and the resultant

strain (deformation) that a material undergoes. The stiffness of the material is described

by a fourth-order tensor, and the stress and strain are represented by symmetric second-

order tensors. This thesis makes several contributions that advance visualization of

stress, strain, and stiffness tensor fields. First, we found an engineering decomposition

of the fourth-order stiffness tensor that allows us to search for the most critical features

(modes of softening) and visualize them as second-order tensors. Second, we provide a

new glyph-based visualization technique for second-order stress and strain tensors. We

present filtering approaches using tensor invariants and other derived features to find

2



critical regions in a stiffness, stress or strain tensor field. Finally, we explore continuous

visualization across a volume.

1.2 Auxiliary Artifacts

During the course of the investigation we used the OpenSees earthquake en-

gineering simulator[62]. It was necessary to interface directly with the source code to

extract never-before-seen data. I developed an open source visualization application

(VEES[57]) that works in tandem with OpenSees. The design of the interface applies

principles from the information visualization discipline to the domain of scientific visu-

alization. The beta version has had 4000 downloads from 2006 to 2009 and feedback

from the civil engineering research community has been positive.

1.3 Dissertation Organization

This work starts with a short introduction to the tensor notation used (chapter

2) and solid mechanics modeling (chapter 3). This is followed by related work on tensor

visualization (chapter 4). Before the chapter on the new decomposition for fourth-

order stiffness tensors, there is a short chapter on converting fourth-order tensors to an

equivalent second-order representation (chapter 5), which the decomposition requires.

The decomposition (chapter 6) and second-order visualization methods (chapter 7 )

follows, detailing the major visualization contributions in this work. Finally, there are

a tutorial and design documentation for VEES (chapter 8).
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Chapter 2

Tensor Basics

This chapter explains the mathematical notation used in the dissertation and

frequently used mathematical tensor operations as a prelude to domain-specific feature

extraction. If the reader is familiar with linear algebra and tensor calculus, this chapter

can be read lightly or skipped.

All tensors have an order and dimension, and the components of a tensor are

always referenced to a particular basis[11]. Weisstein describes an nth order tensor in

m dimensional space as a mathematical object with n indices and mn components[78].

The order of a tensor refers to the number of rows, columns, stacks, etc. It is also the

number of indices. Each index ranges over the number of dimensions of a space[78].

The dimension of a tensor is the number of components in a single row or column (so

Cartesian tensors, for example, have dimension 3). A zeroth-order tensor is a scalar and

has no indices, a first-order tensor is a vector and has one index, and a second-order

tensor can be represented as a square matrix with two indeces. A fourth-order tensor in

4



three dimensions will have 34 or 3x3x3x3 components. Tensors of order one or higher

have a rank. We use Brannon’s definition of rank as the number of linearly independent

rows or columns[13].

This work focuses on visualizing 3D second-order tensors (3x3), and analysis

with 6D second-order tensors (6x6) and 3D fourth-order tensors (3x3x3x3).

2.1 Einstein Notation

It is much easier to read and think about tensors by using Einstein notation.

In Einstein notation subscripts and superscripts are used for each dimension of a tensor

(and the order can be deduced from the number of subscripts and superscripts). For

example, second-order stress tensors are represented by σij where i = 1, 2, 3 and j =

1, 2, 3, and 1, 2, 3 are orthogonal axes in a Cartesian coordinate system. Second and

higher order tensors are shown in bold font where subscripts do not indicate their order.

In Einstein summation, a subscript character repeated in two or more tensors

is used to imply tensor entries being summed over. The tensor entries are multiplied

together before being added to the sum when there are repeated subscripts and no

operator between two tensor operands. Einstein summation is a convenient way to

show common tensor operations succinctly.
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2.2 Common Operations

Below are some tensor operations and properties important for this thesis.

Hopefully they will assist the reader with the notation in later chapters.

2.2.1 Inner Product

Here we use inner product (or dot product) as a primary example of Einstein

summation. Given vectors vi and wi, the inner product is calculated as:

c =
n

∑

i=1

vi · wi = v1w1 + v2w2 + · · · + vnwn (2.1)

Using Einstein summation the inner product can be represented more simply

by

c = vi wi (2.2)

The term single contraction refers to a singly repeated index, which occurs in both inner

product and matrix multiplication. We define it more specifically: the order of the result

is one less than the highest order operand. This excludes matrix multiplication. Below

is an example:

wi = σij vj (2.3)

This can be implemented in a doubly nested for loop.

for( i = 0; i < dim; i++) {

for (j = 0; j < dim; j++) {

w[i] = w[i] + sigma[i][j]*v[j];

}

}
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2.2.2 Scalar Multiplication

When multiplying a scalar times a vector or tensor, each component is multi-

plied by the scalar. For this case we omit subscripts. For example, if we have a vector

v, [v1 v2 v3] and scalar c, the scalar product cv is

c vi = [cv1 cv2 cv3] (2.4)

2.2.3 Matrix Multiplication

Matrix multiplication yields a new matrix, as follows:

Cik = Aij Bjk (2.5)

We represent matrix multiplication without subscripts:

C = A B (2.6)

This convention is for brevity and to contrast with other operations. In matrix mul-

tiplication, the multiplicands and result all have the same order, whereas the result of

tensor contraction has a lower order.

2.2.4 Double Contraction

Below a fourth-order tensor is contracted with a second-order tensor to produce

a second order tensor. Double contraction reduces the order of the tensor by two.

σij = Eijkl ǫkl (2.7)
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The subscript order assists the reader to know which components are multiplied before

the summation. This can be implemented in a nested for loop.

for( i = 0; i < dim; i++) {

for( j = 0; j < dim; j++ ) {

for(k = 0; k < dim; k++ ) {

for (m = 0; m < dim; m++ ) {

sigma[i][j] = sigma[i][j] + E[i][j][k][l]*epsilon[k][l];

}

}

}

}

2.2.5 Outer Product

Outer product or tensor product takes a tensor of order n and dimension m,

and a second tensor of order p and dimension q and creates a new tensor with (mn×qp)

components. The order of the new tensor will depend on the choice of layout of the

components. For example, with two first-order tensors (i.e., vectors), the resulting

second order tensor would be built:








p1

p2









[

q1 q2

]

=









p1q1 p1q2

p2q1 p2q2









(2.8)

More formally, the forms of notation for outer product are

p ⊗ q = pi qj = p qT (2.9)

The superscript T denotes transpose. Outer product is distinguished from inner product

by not repeating indices (i 6= j). The outer product of two vectors such as p and q is a

dyad, which has a rank of one even though it is a second-order matrix with dimension

greater than one. It has a single non-zero eigenvalue and its eigenvector is equivalent
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to the first operand (p). In this dissertation, either Einstein summation or the outer

product symbol ⊗ is used, but ⊗ is preferred to distinguish more easily from inner

product or matrix multiplication.

2.2.6 Eigen-Decomposition

A second-order tensor S can be decomposed into two matrices M and T such

that

S = T M T T , (2.10)

where T is the column ordered matrix of eigenvectors, TT is the transpose of T, and M is

a diagonal matrix. The diagonal components λi of M are the eigenvalues corresponding

to the eigenvectors in the columns of T . For each eigenvector t and corresponding

eigenvalue λ,

Sij tj = λ t (2.11)

2.3 Properties of Tensors

2.3.1 Symmetry

One key property of tensors that simplifies operations is symmetry. According

to Weisstein, an object is symmetric if it is invariant under a symmetry operation. In

the case of tensors, the symmetry operation is changing the order of indices[78].
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2.3.2 Symmetry of Second-Order Tensors

Second-order symmetric tensors are described mathematically using a 3x3 ma-

trix where the off diagonal components are equal: Sij = Sji, for i 6= j. The matrix looks

thus:

S =

















S11 S12 S13

S12 S22 S23

S13 S23 S33

















(2.12)

In other words S = ST , where ST is the transpose of S. If a second-order tensor is

symmetric, its eigenvectors will be orthogonal and the eigenvalues will all be real.

2.3.2.1 Separating a Second-Order Tensor Into Symmetric and Antisym-

metric Parts

The symmetric part of a second-order tensor can be calculated:

sym(S) =
(S + ST )

2
(2.13)

The antisymmetric part, which satisfies S = −ST , can be calculated:

antisym(S) =
(S − ST )

2
(2.14)

The tensor S is the sum of the symmetric part and the antisymmetric part.
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2.3.3 Symmetry of Fourth-Order Tensors

Fourth-order tensors may have symmetry either within or across pairs of in-

dices. Major symmetry is across pairs of indices, i.e. Eijkl = Eklij . Minor symmetry is

within major pairs, i.e. Eijkl = Ejikl = Eijlk = Ejilk.

2.3.4 Positive-Definiteness

A matrix A is positive definite if, and only if, for any non-zero vector x with

the same dimension

xT A x > 0 (2.15)

holds[78]. Here x are column vectors.

It is also the case that a matrix is positive definite if its symmetric part has all

positive eigenvalues. Equation 2.15 only operates on the symmetric part of the matrix.

Consider the equation operating on the antisymmetric part, where B = antisymm(A):

xT B x = xixibii + xixjbij (2.16)

where i 6= j. For each bij in the upper triangle of the antisymmetric part of the tensor

there is a corresponding −bji in the lower triangle of the tensor and so all xixjbij in the

sum will cancel out, and all the diagonal components bii of the antisymmetric part are

zeros.
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2.3.5 Singularity

A matrix is said to be singular if and only if its determinant is zero[78]. Other

characteristics are that the matrix will have at least one zero eigenvalue since the deter-

minant is the product of eigenvalues of the matrix. A singular matrix is not invertible.

The inverse of a matrix is denoted with a superscript of −1, e.g. M−1.
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Chapter 3

Continuum Mechanics and Solid

Modeling

In this chapter we present the basic concepts of models for materials’ constitu-

tive relationships. A constitutive model is a set of equations relating stress to strain and

possibly other pertinent quantities[10]. We start with the simplest model (one dimen-

sional elastic) and then explain how more complicated material properties are modeled

(anisotropy, non-linear elastic, elastic-plastic) in two dimensions and three dimensions.

We neglect thermodynamic effects here.

Prevost and Popescu [63] note that at the macroscopic scale, there is great

similarities in behavior of a wide variety of materials. They state:

Paradoxically, despite the large differences in the nature and structure of ma-
terials such as metals and alloys, polymers and composites,concretes, soils,
there is a great unity displayed in their macroscopic behavior.With different
orders of magnitude, terms like elasticity, viscosity, plasticity, hardening,
softening, brittleness and ductility can be applied to all these materials.
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The models in this chapter start with generally applicable models and move

toward soil-specific models. Finally, we touch on critical features for soils and solids.

The information in the first three sections is derived from Wood [81] and Roylance [65]

and later sections from Jeremić [35] and Prevost and Popescu [63].

3.1 Hooke’s Law - the Basic Constitutive Equation in 1D

For the one dimensional case, we look at a model for a simple elastic spring.

This basic relation is the basis of more complicated and higher dimension models, so

Figure 3.1: Spring response under applied force

it is worth mentioning. All terms in a constitutive relation are constants. Hooke’s law

summarizes the elastic relationship:

F = kx (3.1)

Here x is the change in length, the spring’s response to the applied force. The spring

constant, or stiffness, is represented by k, and F is the applied force. We are interested
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in understanding, through visualization, the relationship between applied force and

material response.

3.2 Stress and Strain Tensors

Stress is force per unit area, and in 3D it is a second-order symmetric tensor

described as follows:

σij =

















σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

















(3.2)

The stress tensor is in Cartesian space, so subscripts 1, 2, and 3 correspond to X, Y

and Z axes. The diagonal components of the tensor, σii, represent normal stresses (The

components represent magnitude of stress along Cartesian axes X,Y and Z). The off-

diagonal components σij , i 6= j represent shear stress. The shear components represent

stresses along facets orthogonal to the normal stress as shown in figure 3.2. The off-

diagonal components are symmetric, i.e. σij = σji.

Strain (ǫ) is dimensionless change in length, ∆length
originallength

. The strain tensor

components, like stress, are symmetric and represent strain in the same corresponding

directions.
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Figure 3.2: Stress tensor components.

3.2.1 Two Useful Scalars Describing Stress

Two scalars frequently used in solid modeling are derived from stress compo-

nents. Mean stress is a scalar invariant, calculated by averaging the normal components,

i.e.

p =
σii

3
(3.3)

in the case of 3D. It represents volumetric or isotropic stress, such as pressure, that is

the same from every direction. Note that in soil literature, mean effective stress, p′ is

calculated. “Effective” refers to total stress minus the effects of pore pressure (from

water or air) in the soil.

Deviatoric or distortional stress describes strictly anisotropic forces. These

include shear components and differences in force along the normal directions. The

stress invariant q quantifying deviatoric stress is calculated:

q =

√

(σ22 − σ33)2 + (σ33 − σ11)2 + (σ11 − σ22)2

2
+ 3(σ2

12 + σ2
23 + σ2

31) (3.4)
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3.3 Two and Three Dimensional Continuum Solids

In order to model the behavior of a surface or volume, their stiffness must be

quantified with more than a single constant. Tensors are used, but certain variables help

describe the components of the tensor, and symbolize the solid materials’ laboratory-

measurable attributes.

3.3.1 Stiffness versus Compliance

By convention, Hooke’s Law is written in the form in equation 3.1. However,

it can also be written

x =
1

k
F (3.5)

The the 2D or 3D tensor representing k is called the stiffness tensor and the

tensor representing 1
k

is called the compliance tensor. The compliance tensor is the

inverse of the stiffness tensor.

Analytically, stress is assigned and strain is calculated using the compliance

tensor. Numerically, however, strain is assigned and stress is calculated using the stiff-

ness tensor. In this section we look at relationships using the compliance tensor.

3.3.2 Important Solid Material Constants

As with the one dimensional case there are several important constants that

help to specify behavior of elastic material. First, there is Young’s modulus(E):

E =
F
A
∆l
l

(3.6)
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E represents the amount of elongation a material undergoes in relation to the applied

stress. F is force, A is area over which the force is applied, and F
A

is stress. The fraction

∆l
l

is change in length divided by length and represents the unitless strain. It is useful

to think of a wire in uniaxial tension. A is then the area of the wire’s cross section and

l is how much it got stretched.

Poisson’s ratio helps describe deformation on an axis or plane orthogonal to

where the length measurement (in equation 3.6) is taken.

ν =
∆d
d
∆l
l

(3.7)

Here d is diameter. Thinking again of a wire in uniaxial tension, you can imagine the

wire getting thinner (d reducing) as it gets stretched; this is the Poisson effect. Like

Young’s modulus, Poisson’s ratio is dimensionless.

Two useful scalars calculated in terms of E and ν are the bulk modulus K and

shear modulus G. Bulk modulus describes resistance to isotropic stress, stress which

causes a change in volume without a change in shape.

K =
E

3(1 − 2ν)
(3.8)

You can imagine how a soft ball might respond to pressure (equal force from every

direction) by becoming more compact, but keeping its round shape.

Shear modulus G describes the converse case, how a material resists stress that

causes a change in shape without change in volume.

G =
E

2(1 + ν)
(3.9)
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3.3.3 Intuition

A 2D tensor can be used to show a 3D triaxial state of stress, if it describes

a uniaxial force on the vertical and a second, radial force around the diameter on the

horizontal plane, as shown in figure 3.3.3. We can use the lower dimension tensor

because the system it represents is an axis and a plane rather than a basis of three axes.

Figure 3.3: Triaxial Stress.

Wood provides a tensor for the constitutive relationship in terms of Young’s

modulus and Poisson’s ratio[81]:









δǫaxial

δǫradial









=
1

E′









1 −2ν ′

−ν ′ 1 − ν ′









·









δσ′
axial

δσ′
radial









(3.10)

The δ symbols indicate that these are stress and strain increments. Note also

that this formula is written in terms of the soil’s effective stress and related variables

are indicated by the prime symbol (′).

The off-diagonal components of the compliance matrix are a calculated by

multiplying a constant times the fraction ν′

E′ , and showing the relationship between the
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changing length and changing diameter.

3.4 Stiffness As A Tensor

With Hooke’s Law, force, deformation and stiffness are all zero order tensors

(i.e. scalars). When stress and strain increments are 3x3 symmetric tensors, compliance

and stiffness are 3x3x3x3 tensors, with minor symmetry (Cijkl = Cjikl = Cijlk = Cjilk),

transforming stress to strain, and vice versa, respectively.

The symmetry in stress and strain force the stiffness and compliance tensor to

exhibit minor symmetry. This means stiffness and compliance contain 36 independent

components out of 81 total.

The constitutive equation for 3D continuum solids is:

ǫ̇ij = Cijklσ̇kl (3.11)

Here, C stands for compliance, and the dot over σ and ǫ denote increments. The

constants i, j, k, and l are numbered 1 to 3, corresponding to Cartesian axes X,Y, and Z.

It is not assumed that the stress/strain relationship is linear. Therefore the constitutive

equation is generalized to express the relationship incrementally[58].

Bower states that these tensors must comply with “material frame indepen-

dence”, that is,

the condition that the tensor-valued functions that relate stress to deforma-
tion measure must transform correctly under a change of basis and change
of origin for the coordinate system[10].

It is easier to understand (and simpler for engineers to make calculations with) stiffness
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as a second-order tensor and stress and strain increments as vectors. Because of sym-

metry, a more compact and efficient representation can be used: 6D vectors for stress

and strain increments, and a 6x6 matrix for stiffness or compliance.

Chapter 5 formally describes the orthonormal basis and algorithm for trans-

forming between these two systems, but for clarity we simply use matrices and vectors

in this chapter.

3.4.1 Elastic Isotropic Materials

Hooke’s Law defines spring-like behavior in solid materials. When force is

applied, the spring’s length changes, and when it is removed the spring reverts to its

original length. Recoverable deformation is referred to as elastic behavior. The simplest

material models describe only elastic behavior.

Isotropic materials have equal magnitude responses regardless of the orienta-

tion of the solid with respect to the applied force. In other words, the derivative of

stress with respect to strain is independent of the orientation of the material[10].
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3.4.2 3D case

Here is the constitutive relation for the 3D case according to Bower[10]:
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(3.12)

One can see the operation of Young’ modulus (E) in conjunction with stress;

1
E

≡
∆l
l

stress
. The ratio −ν

E
, highlighted in red, gives us the change in diameter as the

length changes. Thus, the diagonal components in the top half of the matrix change

length while the off-diagonal components change diameter with respect to length. Be-

cause of isotropy, all shear responses are influenced by the same material constant,

1
2G

.

It is clear that in the elastic isotropic material model, if there is a force along

X, there is a change in diameter along Y , and vice versa. The proportional constant is

the same in both cases due to the isotropy and the result is a fully symmetric compliance

matrix; in tensor form we have the additional major symmetry (Cijkl = Cklij).

3.4.3 Anisotropy

Wood presents a matrix for transverse anisotropy, which typically occurs in a

soil sample. He notes, since particles are more likely to move vertically than horizontally
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(thanks to gravity) the soil’s stiffness along these two directions will differ. In the

equation below, h stands for horizontal, and v for vertical, and the vertical axis is the

z axis.
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(3.13)

However, we note that for the elastic materials used in Geomechanics, major and minor

symmetries are retained, despite anisotropy.

3.5 Elasto-plasticity

According to Prevost and Popescu [63], elastic-plastic models are the most

promising models for soil. In an elastic-plastic model, with sufficient stress, a material

will reach a yield point and have permanent, non-recoverable plastic deformation. The

original Hooke’s Law (equation 3.1) only describes the elastic, recoverable behavior; the

spring returns to its original length when the force is removed.

An elastic-plastic material model needs more descriptive properties. Following

Wood [81], the model must include the following:

1. Elastic properties
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2. Yield Function and Yield Surface

3. Plastic Potential or Plastic Flow

4. Hardening Rule

The elastic properties are simply a fourth-order symmetric tensor such as those described

in equations 3.12 and 3.13. The modeler may simply ask for a set of constants such as

Young’s modulus and Poisson’s ratio and complete the tensor for the user.

A yield function is used to delineate the type of stresses that cause only elastic

deformation versus elastic plus permanent, plastic deformation. For example, the Von

Mises yield function is:

(λ2 − λ3)
2 + (λ3 − λ1)

2 + (λ1 − λ2)
2 = 8c2 (3.14)

Here, λi are the eigenvalues, or principal stresses, and 2c is the yield stress in uniaxial

tension [81]. Either tension, deviatoric stress, or some combination of these can cause a

material of this type to yield and deform plastically. Von Mises materials do not yield

under isotropic compression or tension (three equal eigenvalues).

Given a space spanned by principal stresses λ1, λ2, λ3, a yield surface forms

where a combination of stress eigenvalues signals that a material begins to deform

plastically, causing permanent deformation. It is the zero isosurface of the yield function

(the contour where the function’s value is zero). If plotted in 3D, the function forms

a convex surface. In the example given by equation 3.14, the shape is a cylinder, as

shown in figure 3.4.
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Figure 3.4: Von Mises yield surface in stress space.

More complex material models may have multiple nested yield surfaces, which

adds to the complexity of calculating the elastic-plastic stiffness tensor.

The plastic potential, like the yield function, is a function in stress space. Its

gradient describes the direction in which the material will flow once it yields.

According to Wood, the hardening rule (or evolution law) changes the size

and/or shape of the yield surface ( i.e., the criteria for yielding) and magnitude of

plastic deformation. Jeremić notes that it can also change the plastic flow directions.

The derivative of the yield surface and the derivative of the plastic potential are used

to calculate the elastic-plastic stiffness when the yield stress is exceeded.

The hardening rule may be linear or non-linear. It may range from a simple

scalar (for isotropic changes) to a fourth order tensor (for anisotropic changes) [35]. The

evolution law facilitates modeling behavior like soil becoming stiffer under compression

or less stiff under shear, and changes in stiffness under cyclic loading and unloading as

experienced during an earthquake.
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3.5.1 Nonlinear Elastic Models

Nonlinear elastic models do not have a formal yield surface or plastic potential.

Instead, hardening and softening are controlled by functions that change the compliance

matrix entries depending on the state of stress. The application of elastic nonlinear

models is limited. Prevost and Popescu [63] state:

Although, experience has shown that simple nonlinear elastic stress-strain
models like the hyperbolic model are not capable of modeling fundamental
aspects of real soil behavior, they still remain popular in practice.

As such, a time-varying visualization technique for stiffness of these models would be

particularly critical but very difficult.
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Chapter 4

Related Work

Higher order tensor visualization has the least amount of completed work of

any branches of scientific visualization. It carries general issues for visualization, for

instance, in a 3D field, there is often occlusion, where features may be hidden behind

other displayed objects. There are also tradeoffs between high detail and showing the

global state of a field.

However, the main challenge for visualization of tensors is to be able to show

the domain features in an understandable way. The large number of components de-

scribing a tensor must be distilled into color and shape and displayed on a 2D screen.

Cross-applicability of tensor visualization techniques across science and engi-

neering domains is difficult. Domain features of interest often can limit transferability.

For example, tensors from different domains exhibit mathematical features that limit

cross-applicability, such as varying kinds of symmetry, positive-definiteness (or lack) and

varying order. Table 4.1 summarizes the major domains, their tensors’ meaning, and
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Table 4.1: Scientific and engineering domains’ tensors and their features.

Domain Meaning Order Features

Fluid Dynamics Stress Second Symmetric

Fluid Dynamics Velocity Gradient Second Nonsymmetric

DT-MRI H2O molecule diffusion Second or Fourth Symmetric,
Positive-Definite

Seismology Moment at fracture Second Symmetric

Solid Mechanics Stress Second Symmetric

Solid Mechanics Strain Second Symmetric

Solid Mechanics Stiffness Fourth Non-Major-
Symmetric,
Positive-Semi
or Non-Positive-
Definite

their mathematical features. As tensor visualization techniques have developed, cross-

pollination of ideas rather than direct transfer to new domains has often occurred. This

chapter presents a survey of tensor visualization techniques, with a focus on discovering

what works well for solid mechanics tensor data.

The chapter is organized with a section for second-order tensors and one for

fourth-order tensors. In the section on second-order tensors, streamline techniques are

discussed first, followed by glyphs. In the fourth-order section, the order is reversed since

the streamline features are based on the meaning of a specific glyph which is introduced

first. DT-MRI is the acronym for Diffusion Tensor Magnetic Resonance Imaging. It

is used in medicine to determine the health of neurons in the brain and heart muscle

tissue.
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4.1 Vector Fields

Continuous tensor visualization techniques (integrating over a plane or volume)

grew out of vector field visualization techniques which we discuss first.

4.1.1 Streamlines

Streamlines are a visualization technique originally used for a static vector

field such as a single time step for air or wind flow. Streamlines are tangent to the flow.

The idea is analogous to placing smoke emitting flares in the wind field and observing

the direction of the smoke trails (streak lines). To visualize this, seed points are placed

in the vector field where they are integrated along the direction of the vector. The

number and placement of seed points is a key issue[76, 42, 77, 55, 69, 70, 82]. In 2D,

the visualization can become overly cluttered and in 3D, features may be occluded.

One common method for integration method used for streamlines is fourth-

order Runge-Kutta (RK4). Runge-Kutta is known for its stability. One needs an

integration step size h for time increment t, velocity function V (t, p) and an initial

velocity and position V (t0), p0. “Time” is incremented by:

tn+1 = tn + h (4.1)

The step pn+1 is the RK4 approximation of p(tn + 1), and pn+1 is calculated

pn+1 = pn +
1

6
h (k1 + 2k2 + 2k3 + k4) (4.2)

where

k1 = V (tn, pn) (4.3)
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k2 = V (tn +
1

2
h, pn +

1

2
hk1) (4.4)

k3 = V (tn +
1

2
h, pn +

1

2
hk2) (4.5)

k4 = V (tn + h, pn + hk3) (4.6)

A variation on streamline visualization is Line Integral Convolution (LIC)[14].

A streamline is calculated for each point in the field. Additionally, a noise texture is

generated with the same dimensions as the field. The weighted average of noise textures

along a point’s streamline determines the shade of the point.

4.1.2 Flow Topology of Vector Fields

Helman and Hesselink felt there was a need to automate the generation of

streamlines in vector flow fields. They promulgated the idea of flow topology, with

curves or surfaces that divide the flow into separate regions. A key feature is critical

points. A critical point is a location where the magnitude of the vector is zero. Helman

and Hesselink defined the vector field’s topology by taking the Jacobian of the vector

field at each point. (Note that the Jacobian is not necessarily symmetric.) Topological

features could be categorized as repelling or attracting foci, saddle points, centers of

revolving circles of fluid, and repelling or attracting nodes, as shown in figure 4.1.

The categorization was based on whether the Jacobian tensor had real or imaginary

eigenvalues and the real eigenvalues’ signs[27].
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Figure 4.1: Critical point classification in a 2D flow field. R: real eigenvalue. I: Imagi-
nary eigenvalue. Image source: [26].

4.2 Second-Order Tensor Fields

The two main types of visualization techniques for second-order tensor fields

are hyperstreamlines and glyphs.

4.2.1 Hyperstreamlines

For 2D second-order symmetric tensor fields, Dickinson proposed the idea of

tensor lines[18]. The tensor field was preprocessed by eigen-decomposition. The eigen-

vectors are categorized as major, medium, and minor, where the major eigenvector has

the largest eigenvalue, and minor, the smallest. For positive-definite tensors, they are

automatically sorted by largest absolute value). Either major, medium or minor eigen-

vector is selected to be a vector field and streamlines can be traced in the field. In

the case of isotropic tensors, (all equal eigenvalues), two issues arise. First, any set of

orthogonal vectors can be a set of eigenvectors for the tensor. Second, the ordering of
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major, medium and minor eigenvectors will be random. In this case, the tensor line

may experience sudden changes in direction.

Delmarcelle and Hesselink proposed the idea of hyperstreamlines for 3D tensor

fields, where the other two eigenvalues would set the shape, diameter and color[16, 17]of

the tensor lines.

Figure 4.2: Hyperstreamlines. Figure source: [16]

4.2.1.1 Topology of Second-Order Tensor Fields

Like vector flow fields, second-order continuous tensor fields have a topology.

According to Delmarcelle and Hesselink, the topology is found in the eigenvector fields.

Analogous to vector field critical points are the tensor field’s degenerate points. These

points are defined as locations where there are two equal eigenvalues[17], and the cri-

terion can therefore be applied to 2D or 3D fields. The most elementary singularities

in 2D tensor fields are trisectors and wedges, which are composed of of parabolic and

hyperbolic sectors. Merging two such degenerate points form the singularities shown in
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figure 4.1.

The remainder of the topology of tensor fields are separatrices. These boundary

curves separate parabolic and hyperbolic sectors in the neighborhood of degenerate

points, and connect them[17].

Zheng and Pang discovered that in 3D tensor fields, stable degenerate features

form lines[83]. Moreover, Zheng et al found that the 3D degenerate lines are connected

Figure 4.3: Double degenerate lines in a tensor field. Figure source: [83]

by separating surfaces[85].

4.2.1.2 Hyperstreamlines and DT-MRI Data

Hyperstreamlines have also been applied to the second-order symmetric, positive-

definite tensor fields of DT-MRI data. Diffusion Tensor Magnetic Resonance Imaging

(DT-MRI) describes diffusion of water molecules through tissue. According to Kindl-

mann and Weinstein, the key feature of interest is the anisotropic motion of water

molecules [45]. They note that with brain scans, doctors wish to visualize white matter,
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the fibrous structure which connects major regions of the brain. Westin, et al. de-

composed MRI diffusion tensors and correlated linear anisotropy with the major white

matter tracts [79]. The fields represent water molecule diffusion within cells such as

muscle fibers and nerve axons. Basser, et al. claimed that the normalized eigenvec-

tor associated with the largest eigenvalue lies parallel to nerve fiber tracts[5]. Thus,

it is clear that a hyperstreamline representation will give a line-like representation of

nerve pathways. However, more complex configurations of fibers (crossings, kissings, T

and Y junctions) cannot be distinguished by second-order tensors, partly because the

resolution of this data type is not high enough[32].

Scheuermann, et al., tested hyperstreamlines on 3D fields of symmetric stress

tensors from solid mechanics[66]. While the results looked promising for simple point

loads in elastic materials, the forces were very difficult to interpret in more realistic

simulations. Here, the features were tension (positive eigenvalues) and zero determinant

(at least one zero eigenvalue), and while it was possible to identify regions of interest,

the behavior in those regions was difficult to identify. Jeremic, et al. followed on by

exploring the use of hyperstreamsurfaces [38]. While these were more powerful, they

required separate visuals for each of the three principal stresses, as hyperstreamlines did,

and fell short of providing a visualization that could show all key features. Hashash, et

al. also used hyperstreamlines to show loading history for multiple time steps and the

stresses experienced at each step. They found it useful for comparing different material

models’ responses to stress. However, they were unable to identify the signs of the

principal stress components (eigenvalues). Further, they were unable to identify where
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a “K0 state of stress” might exist[25].

However, simple tensor lines were later successfully used for 2D stress tensors

from solid mechanics[80]. Wilson and Brannon, focused on the domain-specific feature

of shear in crack propagation. The goal was to find abrupt changes of direction in shear

forces. Instead of following the eigenvectors, they used the directions of maximum shear

which was simply a 45◦ rotation of the eigenvectors. The background was colored by

magnitude of deviatoric component of stress to emphasize regions of high shear.

4.2.2 Glyphs

Another way of visualizing second-order tensors is with glyphs that are placed

at discrete locations in the field, or are used to show detail at a single point. A glyph is a

graphical icon that uses color and shape to illustrate features of the object it represents.

4.2.2.1 Hedgehog Glyphs

The simplest stress glyph is the hedgehog glyph. The glyph is composed of

lines for each eigenvector. The idea is similar to hyperstreamlines, but is non-continuous.

In the case of solid mechanics, the lines represent the orientation of principal stresses.

Jeremić et al. found hedgehogs inadequate for understanding the contents of a 3D stress

tensor field[37].
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Figure 4.4: Hedgehog glyphs in a tensor field resulting from a double point load applied
to a volume. Red represents tension, and green, compression. Figure source: [37]

4.2.2.2 DT-MRI Glyphs

An important difference between the diffusion tensors and the solid mechanics

stress tensors is that the diffusion tensors are positive definite with positive eigenvalues.

A diffusion tensor is classified based on eigenvalues λ1, λ2 and λ3, It is isotropic

where λ1 ≃ λ2 ≃ λ3, planar anisotropic where λ1 ≃ λ2 ≥ λ3, or linear anisotropic where

λ1 ≥ λ2 ≃ λ3. The degree of each case is determined as follows:

λ1−λ2

λ1+λ2+λ3

2(λ2−λ3)
λ1+λ2+λ3

3λ3

λ1+λ2+λ3

(linear case) (planar case) (isotropic case)
The linear case represents fiber tracts, such as neurons in brain tissue, as described in

section 4.2.1.2. Superquadric glyphs have been developed to illustrate continuous grada-

tions between these three categories [49, 44] in a barycentric shape space as shown in fig-

ure 4.5. The spherical glyph at (a) illustrates isotropy, (b) illustrates planar anisotropy,

and (c) illustrates linear anisotropy. Superquadrics’ other advantage of the that they

give information about the orientation of the eigenvectors in addition to the type of
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Figure 4.5: Superquadric tensor glyphs. Figure source: [44]

anisotropy. However, they are not fully adequate to illustrate stress since they are lim-

ited to positive-definite tensors. Several key stress features for solid mechanics, namely

shear, triaxial compression and triaxial extension, have both negative and positive eigen-

values.

4.2.2.3 Solid Mechanics Glyphs

A recent study by Hashash et al. [25] evaluated several glyphs in their ability

to show stress, strain, and solids’ stress-strain response.

Among the glyphs in the study were:

• Lamé stress ellipsoid which was a glyph where its three axes were defined by the

absolute value of the magnitudes of the principal stresses.

• Haber glyph which consisted of a cylindrical rod through an elliptical disk. The

half length of the rod represented the magnitude of the major principal stress,

while the shape of the disk was controlled by the magnitudes of the median and
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minor stresses.

• Cauchy’s stress quadric glyph which used the tensor components in a quadric

surface equation such that the glyph was oriented in the principal directions

• Reynolds stress glyph which was defined such that the distance from the origin

of the glyph to any point on its surface is the magnitude of normal stress in that

direction

Figure 4.6: Reynolds Glyph for stress tensor with eigenvalues (-0.816, 0.408,0.408).
Eigenvectors coincide with Cartesian Axes. Red is X, green is Y and blue is Z.

The authors additionally presented the HWY glyph which was a variation on the

Reynolds glyph designed to illustrate shear[25].

The scalar for creating the quadric surface was the square root of the difference

of the square of a stress vector on the selected plane and the square of the Reynolds

scalar (representing the normal stress on that plane). Table 4.2.2.3 provides the formulas

for the quadric glyphs described. Hashash et al. noted different shortcomings with each

type of glyph. First, they note Lamé and Reynolds could not show principal directions

for nearly isotropic stress. However, with isotropic stress, a single eigenvalue spans the

entire space, and the choice of orthogonal eigenvectors (and the principal stresses they
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Figure 4.7: HWY glyph for illustrating shear stress, eigenvalues listed in illustration.
Image source:[25].

Figure 4.8: Lamé stress ellipsoids for single point load applied on top center of volume
(generated with VTK[67]).

represent) is arbitrary.

A serious drawback for the Lamé glyph is that it does not differentiate positive

principal stresses from negative. For instance, pure shear, a frequent cause of a solid

failure during an earthquake, has a signature of two eigenvalues equal in magnitude but

with opposite signs. The Lamé glyph would not help to identify pure shear.

Hashash argued that the Cauchy stress glyph does not have an intuitive shape

since,
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Name Formula

Lamé (x1)2

(λ1)2
+ (x2)2

(λ2)2
+ (x3)2

(λ3)2
= 1

Haber see description (non-quadric)

Cauchy σijninj = ±k2

Reynolds c = σijninj

HWY σShear =
√

(σijnj)(σijnj) − (σijninj)2

Table 4.2: Glyph types presented by Hashash et al. [25]. xi:variables along the principal
axes, λi: eigenvalues, σij :stress tensor components, k:selected constant, and ni: vector
from center to surface of a unit sphere.

“magnitude of the normal stress/strain is inversely proportional to the square
of the size” [25]

The appearance of the Cauchy stress glyph is the inverse of a Reynolds glyph. Along

the eigenvector with the smallest eigenvalue, the distance from the center of the glyph

to the surface is largest. This makes it difficult to interpret the state of stress.

Haber glyphs are ambiguous distinguishing between horizontal and vertical

stresses in the case of two identical eigenvalues, and the HWY glyph does not show

orientation of shear [25].

4.2.3 Seismology Glyphs

Seismologists use a moment tensor Mij to provide a general representation of

a seismic source [19]. Seismic moment tensors are a variation of stress tensor for an

elastic substance, similar to stress tensors for Geomechanics. However, they differ in a

couple of very important ways. Seismic moment tensors (or acoustic emission moment

tensors) are created from a measured event such as an earthquake or cracking solid.

Sound waves are emitted at the event and can be measured. Thus, moment tensors
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represent a strictly elastodynamic source [43]. Second, in Geomechanics, a stress tensor

relates to forces applied on the exterior surface of a volume. Moment tensors instead

relate to forces that cause displacement across an surface, where the surface represents

a buried fault [2].

Seismology “beachball” glyphs provide two kinds of information: (1) the type

of fracture mechanism, and (2) the orientation.

The first step in classifying how a solid fails is eigen-decomposition. A diag-

onalized moment tensor can be further decomposed into isotropic and deviatoric com-

ponents. A purely isotropic tensor is characterized by three equal eigenvalues. The

isotropy in a moment tensor represents a change in volume. Pure isotropy in a moment

tensor is comparable to an ideal explosion (positive eigenvalues) or implosion (negative

eigenvalues) [20]. The deviatoric component is the remainder of the original matrix

after the isotropic component has been removed.

Below is the mathematical notation for the isotropic and deviatoric components

of matrix M , where the trace (tr) is the sum of the diagonal elements and m∗
i is mii −

tr(M)/3. Note that the convention in this field differs from that of DT-MRI tensors.

M =

















tr(M)
3 0 0

0 tr(M)
3 0

0 0 tr(M)
3

















+

















m∗
1 0 0

0 m∗
2 0

0 0 m∗
3

















(4.7)

Moment tensor elements represent dipoles. A dipole is composed of two equal

and opposite vectors laying along an axis orthogonal to both of them. The physical
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meaning is the direction and angle of earth movement along opposite sides of a fault.

According to Dreger double couple (DC) consists of two linear vector dipoles of equal

magnitude but opposite sign, resolving shear motion on faults oriented 45 degrees to

the principal eigenvectors of Mij [19]. This is the same definition of shear used in solid

mechanics with stress tensors.

Compensated linear vector dipole (CLVD) refers to when “a change in volume

is compensated by particle motion in the plane parallel to the largest stress” [20].

This may be a mechanism for deep earthquakes [46]. CLVD is modeled by eigenval-

ues proportional to −2, 1, 1, reflecting particle motion. The same eigenvalue signature

represents triaxial tension in stress tensors for solid mechanics.

Figure 4.9: Failure modes for moment tensors, p-wave amplitude, and representative
beachball glyphs. Note that positive wave amplitudes are compressional, and negative
are dilational. Figure source: [20].

Figure 4.9 shows the failure mechanisms associated with pure isotropy, uni-

axial tension, DC, and CLVD. For the DC types, the possible shear planes are at the
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division between positive and negative amplitudes, and the color contrast on the beach

balls resolve in sharp lines to emphasize their orientation. (The principal stresses, by

implication, are 45◦ off from them.) Clutter is not a problem for these glyphs since just

a few are sprinkled in each neighborhood of an earthquake epicenter or solid fracture.

4.3 Fourth-Order Tensors

Ellipsoidal glyphs have long been used to represent second-order symmetric

tensors with applications in engineering. The main glyph technique for visualizing

fourth-order tensors is an extension of the Reynolds stress glyph. The formula for a

point on the surface of the fourth-order Reynolds glyph is

c = Eijklninjnknl (4.8)

Color is used to show the magnitude of the vector from the origin to the surface

points. We extend the color scheme to cover both negative and positive values of vector

length since shape alone is ambiguous.

Kriz et al. also used a fourth-order Reynolds glyph representation for materials

[48]. The representation came from Christoffel’s equation for waves propagating in

anisotropic media.

[Cijkℓνiνj − ρv2δkℓ]pk = 0 (4.9)

Here, Cijkℓ are major and minor symmetric stiffness tensor components, νi are com-

ponents of the wave direction vectors, v is the wave speed, ρ is density, and pk is the

43



particle displacement direction cosine (i.e. the eigenvector). In this formulation, there

is a direct mapping from ν to eigenvectors and from ρv2 to eigenvalues. The shape of

the glyph is mapped to wave velocity magnitude or the eigenvalues, while the color on

the glyph is mapped to vibration direction or eigenvectors.

In a recent paper, Basser and Pajevic [6] applied eigen-decomposition to a

fourth-order symmetric covariance tensor for use in DT-MRI. The resulting second-

order eigentensors and their eigenvalues were used to represent and visualize variability.

Basser and Pajevic visualized the second-order eigentensors and fourth-order covariance

tensors as Reynolds glyphs. While the decomposition was applied to fully symmetric

positive definite covariance tensors, it motivated our approach for visualizing nonsym-

metric fourth-order stiffness tensors.

4.3.1 HOT-lines

Schutz and Seidel noted that second-order tensors have proved inadequate for

tracking neuronal fibers in the case of crossings, kissings, fanning or bending fibers in

MRI tensor data[68]. High angular resolution techniques have led to a fourth-order (and

theoretically, higher) representation which is now used to resolve such cases.

In HOT-lines, Hlawitschka and Scheuermann [32] used spherical harmonics to

compute fourth-order Reynolds glyphs more efficiently. Their method could be applied

to fully symmetric tensors of even order on a regular grid, and particularly to fourth-

order diffusion tensors from DT-MRI. Equation 4.8 is equivalent to the set of functions

of the truncated Laplace’s series of spherical harmonics. The spherical harmonics helped
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detect global maxima on the glyph’s surface, which represented directions for tracking

fibers in DT-MRI [32]. Although spherical harmonics could also be used to detect

minima, it is not clear that it would be meaningful in detecting loss of stiffness. Also,

fourth-order stiffness tensors are not fully symmetric, so this technique could not be

applied.

Schutz and Seidel noted that the local maxima method underestimates the

orientation of fiber tracts by 10◦, or ignores non-orthogonal peaks[68]. Their approach

was to decompose the high order tensor into an (optional) isotropic part, several rank-

one high order terms representing peaks, and a small residual representing noise. The

isotropic portion represents the ambient part of the diffusion.

Peaks are the set of symmetric rank-one approximations of high order tensors,

and represent fiber orientations. The peaks are essentially a scalar multiplied by the

outer product of a series of unit length vectors. A narrow peak’s sharpness grows with

number of vectors in outer product part. (For a fourth-order tensor, there will be four

vectors).

Schutz and Seidel’s algorithm was iterative. Initially, everything was residual

noise in a Q-Ball representation[75], which is an orientation distribution function (ODF).

Isotropy was found by computing the mean of homogeneous form of the ODF (using

spherical harmonics) and multiplying it by the identity tensor. From the residual of the

ODF, each rank-one term was optimized. The Gradient Descent technique was used to

find rank-one peaks. A peak was accepted if it significantly reduced the residual norm.

Neither of these streamline techniques seems applicable to fourth-order stiffness
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tensors. Maxima on the fourth-order Reynolds glyph do not tell us where stiffness has

been reduced, and a rank-one, first-order tensor (i.e., a vector) does not appear sufficient

to tell us the mode of stress the solid is vulnerable to.
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Chapter 5

Unrolling Tensors To Matrices

A major treatise of this thesis is that tensor decomposition can lead to a

reduced number of components for visualization as well as helping to find the most

significant data. However, numerical methods do not exist for decomposing fourth-order

tensors into eigenvectors and eigenvalues, singular values, or polar stretch plus rotation.

Numerical methods for these decompositions only exist for second-order tensors, i.e.,

matrices. Therefore, a method is needed to unroll a 3x3x3x3 tensor into a 9x9 matrix,

establishing the transfer of component locations and the new basis. Additionally, 3x3

tensors must be unrolled into vectors in the same basis to be able to express the full

stress-strain constitutive relation.

The most unrolling is the matrix of Mandel components[54]. This unrolling

has the advantage of an orthonormal basis. In addition, in the case of minor symmetry

in the original 3x3x3x3 tensor (Eijkl = Ejikl = Eijlk = Ejilk), it can be expressed as a

6x6 matrix. Recently, this unrolling has been defined more formally [34], [28], [74].
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The Mandel[54] mapping from the fourth-order stiffness to an equivalent 6x6

matrix is shown in equation 5.2, and the mapping from a 3x3 stress or strain tensor to

a 6D vector is shown in equation 5.3.

5.1 Basis

The orthonormal basis for the 9x9 matrix is composed with outer products of

orthonormal vectors spanning 3D space:

e1 ≡ (1, 0, 0)

e2 ≡ (0, 1, 0)

e3 ≡ (0, 0, 1)

Tarantola lists the basis components B of the 9x9 matrix as three diagonal elements,

B1 ≡ e1 ⊗ e1

B2 ≡ e2 ⊗ e2

B3 ≡ e3 ⊗ e3
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three symmetric elements

B4 ≡ 1√
2
(e1 ⊗ e2 + e2 ⊗ e1)

B5 ≡ 1√
2
(e2 ⊗ e3 + e3 ⊗ e2)

B6 ≡ 1√
2
(e3 ⊗ e1 + e1 ⊗ e3)

and three antisymmetric elements:

B7 ≡ 1√
2
(e1 ⊗ e2 − e2 ⊗ e1)

B8 ≡ 1√
2
(e2 ⊗ e3 − e3 ⊗ e2)

B9 ≡ 1√
2
(e3 ⊗ e1 − e1 ⊗ e3)

Here, ⊗ denotes outer product, so, for example, B4 is a 3x3 matrix with 1√
2

in the (1,2)

and (2,1) components and zeroes for the rest.

5.2 Matrix and Vector Representation

Following Tarantola, the 9x9 matrix representing the fourth-order tensor E can

formulated by unrolling each 3x3 submatrix first into a vector. Then one can compose

Matrix (1,1) (2,2) (3,3) (1,2) (2,3) (3,1) (2,1) (3,2) (1,3)

Vector 1 2 3 4 5 6 7 8 9

Table 5.1: Indices for one unrolling from a 3x3 tensor to a vector.

a 9x9 matrix T with its (1,1) component mapping to the (1,1,1,1) entry of Eijkl and so

on.
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T has nine quadrants of 3x3 components.

















T11 T12 T13

T21 T22 T23

T31 T32 T33

















(5.1)

The components for each quadrant, in the new basis, are calculated:

T11 ≡ Eijkl

T12 ≡ 1√
2
(Eijkl + Eijlk)

T13 ≡ 1√
2
(Eijkl − Eijlk)

T21 ≡ 1√
2
(Eijkl + Ejikl)

T31 ≡ 1√
2
(Eijkl − Ejikl)

T22 ≡ 1

2
(Eijkl + Eijlk + Ejikl + Ejilk)

T23 ≡ 1

2
(Eijkl − Eijlk + Ejikl − Ejilk)

T32 ≡ 1

2
(Eijkl + Eijlk − Ejikl − Ejilk)

T33 ≡ 1

2
(Eijkl − Eijlk − Ejikl + Ejilk)

Stiffness tensors are constrained to exhibit minor symmetry (Eijkl = Ejikl = Eijlk =

Ejilk) so it is clear quadrants T13, T31, T23, T32 and T33 contain all zero entries and can

be omitted in the second-order representation.

The minor symmetry also enables a simpler form of the transition to a 6x6

matrix. (These are the Mandel components[54]).
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Given a 3x3x3x3 tensor Eijkl with indices E1111 through E3333, an equiva-

lent 6x6 matrix M is made by substituting entries from Eijkl and multiplying by the

appropriate constants:

M =











































E1111 E1122 E1133

√
2E1112

√
2E1123

√
2E1131

E2211 E2222 E2233

√
2E2212

√
2E2223

√
2E2231

E3311 E3322 E3333

√
2E3312

√
2E3323

√
2E3331

√
2E1211

√
2E1222

√
2E1233 2E1212 2E1223 2E1231

√
2E2311

√
2E2322

√
2E2333 2E2312 2E2323 2E2331

√
2E3111

√
2E3122

√
2E3133 2E3112 2E3123 2E3131











































(5.2)

A second-order symmetric tensor S such as stress or strain, in the same basis

will be the transpose of

(

S11 S22 S33

√
2S12

√
2S23

√
2S31

)

(5.3)

The transpose makes the form of the constitutive equation for solid mechanics appear

as in chapter 3.
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Chapter 6

Decomposition of Fourth-Order Stiffness

Tensors for Visualization

A major focus of current research in civil, mechanical and other branches of

engineering is modeling and simulating behaviors of solids and structures made up of

various materials (soils, concrete, steel, etc.). Realistic models of solids allow engineers

to design safer machines and structures. The fourth-order 3D stiffness tensor plays a

pivotal role in such modeling and simulations. The stiffness tensor represents the rela-

tionship between increments of stress and increments of strain. Stiffness changes state

during plastic deformation and failure, so visualization is an important tool for providing

(1) insight into material behavior and (2) visual verification of a model. Visualization

of fourth-order tensors has not been explored in depth previously, as noted in chapter

4. Challenges include (1) the large number of components (3x3x3x3 for 3D), (2) loss

of major symmetry and (3) loss of positive definiteness, with possibly zero or negative
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Table 6.1: How a stiffness tensor can change with increasing stress.

Material Behavior Symmetry Tensor Properties

elastic symmetric positive-definite

elastic-plastic asymmetry eigenvalue magnitude reduction,
nonsingular if hardening

failure, localized asymmetry non-positive definite, possibly sin-
gular

eigenvalues.

One goal of this work is to find a decomposition that (a) reduces the number

of components to visualize and (b) highlights the most interesting regions of a volume.

The term “interesting” is domain dependent, but the decomposition should be general

enough to be useful for many branches of engineering that model and simulate solids. We

present a decomposition of fourth-order tensors that facilitates their visualization. The

method can be applied to many solid mechanics applications, including Geomechanics.

It highlights susceptibility to failure, a feature of interest for engineers.

6.1 Stiffness Changes

Solid materials undergo a sequence of changes under increasing loads. In gen-

eral, increasing loads beyond the elastic limit induce changes in the stiffness tensor

described in table 6.1.
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6.1.1 Elastic Behavior

In this dissertation, “elastic” is used synonymously with temporary deforma-

tion; the deformation reverses on removal of forces. As an example of elastic defor-

mation, imagine a paper clip: it will elastically change shape to hold a small stack

of papers, suffering virtually no permanent deformation after the papers are removed.

Brannon notes plasticity theories typically presume that there exists some contiguous

domain of stress levels for which permanent (non-recoverable) deformation is negligible

[58]. The governing equation to be solved is

σ̇ij = Ee
ijklǫ̇kl (6.1)

Here, Ee symbolizes elastic stiffness σ̇ij symbolizes stress increments and ǫ̇kl symbolizes

strain increments. Elastic stiffness tensors are both major symmetric (Ee
ijkl = Ee

klij)

and minor symmetric (Ee
ijkl = Ee

jikl = Ee
ijlk = Ee

jilk), as well as positive definite.

6.1.2 Elastic-Plastic Behavior

We use the word “plastic” synonymously with permanent deformation. When

a paper clip is deformed by a large amount, only a portion of the deformation is recovered

upon removal of the force. As discussed by Brannon [12], this familiar observation is

generalized in plasticity theory with the strain increment ǫ̇ as a sum of a recoverable

elastic part plus a permanent plastic part. The onset of plastic deformation is extremely

important. With permanent deformation, a machine part may need to be repaired or

replaced. A building may become unsafe. The soil may no longer be able to support a
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bridge adequately. The governing equation for elastic-plastic behavior is

σ̇ij = Eep
ijklǫ̇kl (6.2)

where Eep symbolizes elastic-plastic stiffness.

Materials modeled as elastic-plastic are characterized by a yield function,

F (σij), a function of stress.(See chapter 3 for more details). The yield criterion, which

delineates points at which stress causes elastic-plastic deformation versus pure elastic

deformation, is defined at

F (σij) = 0 (6.3)

The yield surface is the zero isosurface as described by equation 6.3. Stress states causing

F (σij) < 0 correspond to elasticity. Stress states causing F (σij) ≥ 0 are attainable only

via plastic loading[12], a type of loading that causes some permanent deformation.

6.1.3 Hardening and Softening

Classical equations of plasticity theory model the stress increment as a fourth-

order elastic-plastic stiffness tensor acting on the total strain increment [12]. The

elastic-plastic stiffness tensor’s formulation is a function of the elastic stiffness, yield

function F (σij), plastic flow function G(σij), and other internal model variables. A

“non-hardening” material has a fixed yield surface. Brannon notes that during plastic

loading of non-hardening materials, the stress increment is constrained to move tangent

to the yield surface, and the elastic-plastic stiffness tensor is a positive-semi-definite

rank-one projection operator. It essentially removes the part of the elastic stress incre-
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ment that points outside the yield surface[58].

For a hardening material, the yield surface can expand outward, as shown in

figure 6.1. Then, increasingly higher levels of stress are required to continue plastic

loading. In this case, the elastic-plastic stiffness tensor is positive definite and invertible

(non-singular).

Figure 6.1: Yield surfaces (meridian plane) with various types of hardening or softening.
p: volumetric stress (pressure), q: deviatoric (distortional) stress. Figure source: [35]

For a softening material, the yield surface contracts in the neighborhood of

the stress, so diminishing stresses are needed to continue plastic loading Brannon notes

that in this case, the elastic-plastic stiffness tensor can become non-positive definite[58].

Depending on the nature of the loading, softening can lead to an instability in the

material response that is characterized by an intense localization (increased strain rate

in a defined region) of the deformation in narrow bands[73].
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6.1.4 Localized Failure

With enough bending force, a paper clip will deform permanently and even-

tually break. According to early literature, a solid (in this case a clip) is said to “fail

locally” when the stiffness tensor is singular. Here, “locally” means that the solid breaks

or liquefies at a set of points, or region, inside the domain [53, 61, 64]. Singularity is

identified by one or more zero eigenvalues. Later literature identified localized failure at

the point of loss of positive definiteness [61]. A primary goal of this visualization work is

to filter the field of evolving tangent stiffness tensors to identify regions near or beyond

the localization threshold and to visualize the corresponding modes of susceptibility to

failure.

6.2 Related Work on Decomposition

In 2007, Basser and Pajevic [6] applied eigen-decomposition to a fourth-order

symmetric covariance tensor for feature detection in DT-MRI, producing a set of six

second-order eigentensors. The authors also noted that the mathematical underpinnings

of these eigentensors came from Lord Kelvin’s work to identify modes of deformation

in linear elastic solids. Eigentensors have also been used to classify symmetries in

anisotropic solids such as crystals[72].

While Basser and Pajevic applied the decomposition to fully symmetric positive-

definite covariance tensors, these ideas motivated our own research with respect to more

general fourth-order stiffness tensors. It seemed plausible that the loss of stiffness would
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cause a significantly lowered eigenvalue, and I posited that the eigentensor associated

with this eigenvalue might have some relation to the mode of stress that would cause

large deformation.

Maier and Hueckel gave the criterion for a solid breaking (bifurcation or failure)

as a singular stiffness tensor[53]. This criterion is significant because a singular stiffness

must have at least one zero eigenvalue. Neilsen and Schreyer were the first to use

an eigen-decomposition procedure to determine the deformation mode associated with

the bifurcation[61]. Their criterion for bifurcation was the loss of positive definiteness,

which occurs before singularity. First, they performed a decomposition to obtain the

symmetric part of the stiffness,

sym(E) =
1

2
(E + ET ) (6.4)

since E is positive definite if and only if sym(E) is positive definite. Then they followed

with eigen-decomposition on the symmetric part of the stiffness tensor. When positive

definiteness was lost, they used the eigentensor of the zero eigenvalue of sym(E) as

the mode of bifurcation. Note that the eigentensor of sym(E) is not necessarily an

eigentensor of E itself, unless E is symmetric.

6.3 Our Approach

We should be able to detect susceptibility to failure and nature of the stiffness’

vulnerability, in terms of stress. In our approach, we perform a polar decomposition

on the stiffness, followed by eigen-decomposition on the polar “stretch”. The two step
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decomposition was proposed by Brannon[58]. Polar decomposition is a technique to

separate a matrix into two component matrices,

E = R S (6.5)

where S is a pure stretch (symmetric positive-semidefinite matrix), and R is a pure

rotation (orthonormal matrix) [29, 22, 31, 30, 86, 24]. Polar decomposition is known in

plasticity and mechanics literature, but our use of it for analyzing the stiffness tensor is

new. Nielsen and Schreyer [61] showed that eigen-decomposition on the symmetric part

of the stiffness tensor produced the critical deformation mode at failure. Like Nielsen and

Schreyer, we can detect the loss of stiffness when a significantly low eigenvalue occurs.

With polar decomposition, however, Brannon posits that the eigentensor associated with

a significantly low eigenvalue represents the stress mode that will produce the greatest

deformation. The polar decomposition also appears to tell us about the changing flow

direction of permanently deforming material.

6.3.1 Method Constraints

Brannon’s decomposition recovers facets of the original modelers’ composition.

However, it also leads to some constraints on the range of models where the method

can be applied. Our method can be applied to stiffness tensors exhibiting the following

properties:

• Fourth-order tensors with minor symmetry : The method relies on the second-

order tensors (stress and strain increments) being symmetric, which constrains
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the fourth-order stiffness tensor to exhibit minor symmetry.

• Elastic-plastic material models: Our method is applicable to general elastic-plastic

models, and it can also be applied to any material behavior where the stiffness

tensor changes as the loading progresses such as pressure sensitive elasticity or

damage.

• Small deformation theory : According to Brannon, “Small deformation” refers

to problems with only small displacement gradients. This means that the stiff-

ness tensors are cast with respect to the reference configuration such that any

changes in stiffness associated with rigid material rotation are eliminated from

consideration[58].

• Absence of elastic-plastic coupling : With elastic-plastic coupling, plastic flow can

affect the elastic properties[12]. and is an additional source of non-associativity[33].

6.3.2 Method Details

Our decomposition is composed of the following steps:

1. Unroll the 3 × 3 × 3 × 3 tensor into a 6 × 6 matrix using Mandel components

(See chapter 5 for details). The 81-component stiffness tensor has 36 independent

components, preserved in the new basis.

2. Perform a polar decomposition on the 6×6 matrix, producing two 6×6 matrices:

the rotation part and the stretch part.

60



3. Perform an eigen-decomposition on the stretch part of the polar decomposition,

yielding 6 eigenvectors and 6 real eigenvalues.

4. Compose an eigenvector into a symmetric 3×3 eigentensor if it has a significantly

lower single eigenvalue, reversing the unrolling.

5. Visualize the second-order eigentensor with a glyph that shows its structure and

also shows significant features such as eigenvalue or mode.

Continuous visualization (integrated across the volume) of the second-order tensor field

is also possible.

6.3.2.1 Unrolling

Unrolling from tensor to matrix requires placing the constants in specific ma-

trix entries and multiplying by constants as shown in equation 6.6.

M =
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(6.6)

This casts the fourth-order tensor in Mandel form[54]. Mandel components provide

an orthonormal basis[74]. In addition, they form an isomorphism between the double
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contraction (Eijkl ǫkl) and the equivalent single contraction (Mij ǫj)[6]. The details of

the basis are covered in chapter 5.

6.3.2.2 Polar Stretch and Mode of Vulnerability

Eigen-decomposition is performed on the symmetric stretch matrix S from the

polar decomposition. This can be done using the lapack library [3]. We analyze the

eigen-decomposition of S to find the eigenvector associated with its smallest eigenvalue.

Then, we convert this first-order eigenvector Vi, i = 1 . . . 6 to a symmetric second-order

eigentensor Sij :

Sij =
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(6.7)

Equation 6.7 is the inverse of unrolling operation shown in chapter 5 equation 5.3.

The initial eigenvalues of a stiffness tensor are based on the bulk modulus and shear

modulus of the material, and the initial stiffness matrix is a pure stretch; its rotation

component is the identity. With loading forces sufficient to cause plastic deformation,

the stiffness may change as described in section 6.1.3, and resistance to certain types of

stress increments may be reduced.

A polar decomposition of stiffness matrix E quantifies this degradation. Loosely,

eigenvalues of S (the “stretches”) are larger than their initial values if the material has

stiffened. If they are smaller, it has become less stiff. According to Brannon, the
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corresponding eigentensors of S represent loading modes[58].

Suppose the stretch eigenvector associated with the smallest eigenvalue is [0,

0, 0, 1, 0, 0]T (eigenvectors are column vectors). The corresponding normalized stretch

eigentensor is:

















0
√

1/2 0

√

1/2 0 0

0 0 0

















This is a pure shear on the X-Y plane. If the corresponding eigenvalue is 0.75 of its

initial value, then the material is 25% less resistant (stiff) to shear on the X-Y plane

than it was initially. Selecting the lowest stretch eigenvalue can therefore reveal which

regions are suffering significant plastic loading when many different types of materials

are used in a simulation. As the stiffness matrix approaches singularity, having a robust

computation procedure, as described in section 6.4 is crucial. An eigenvalue approaching

zero is considered to be a failure mode for the material.

If E is nonsingular and has negative eigenvalues, the physical meaning of the

polar decomposition is unclear. Even if a symmetric-antisymmetric decomposition is

used instead, its meaning is still unclear. According to Brannon, the occurrence of a

negative eigenvalue in the stiffness matrix corresponds to dynamic softening instability,

which requires different differential equations of motion[58]. In our visualization, we use

a uniquely shaped black glyph to indicate an occurrence of a negative eigenvalue, and

interpretation of its mode of vulnerability is not possible.

One issue for visualizing eigentensors is evident in the triaxial case. The eigen-
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tensor represents either triaxial tension or triaxial compression. For an eigenvector yj

of polar stretch Sij of stiffness, in Mandel form, with the lowest eigenvalue, and its

eigenvalue λ, both of the following are true:

Sij yj = λ yj (6.8)

Sij (−yj) = λ (−yj) (6.9)

Since the eigenvector multiplied by any constant satisfies the equations, the lapack

library [3] may choose either case while solving the eigen decomposition. In order to

correctly determine whether we have triaxial tension or triaxial compression, we need

to do an additional test.

This test was suggested by Rebecca Brannon[1]. If we convert the Mandel

eigenvector to its equivalent second-order symmetric eigentensor form Yij , we can test

its “direction”. It should be oriented during plastic loading such that,

∂F

∂σij
Ee

ijkl Ykl > 0 (6.10)

Here ∂F
∂σij

is the yield surface normal and Ee
ijkl is the elastic stiffness, for the particular

integration point. If the condition in equation 6.10 is not satisfied, we multiply the

eigentensor by −1. Then, it will have the correct orientation.

6.3.2.3 Polar Rotation and Elastic-Plastic Materials

The rotation part of the polar decomposition also carries interesting informa-

tion. As we have mentioned in chapter 3, elastic-plastic materials are characterized by
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a yield function and a plastic flow potential function.

In associated material models, the yield surface and plastic flow surface co-

incide, and the plastic strain increment “direction” is the same as the “normal” to

the yield surface[81]. Numerically, the yield surface normal is calculated as the partial

derivative of the yield function with respect to stress, ∂F
∂σij

. In associated materials there

is no rotation component (R is the 6D identity matrix).

We conjecture that for non-associated materials, the polar rotation (in 6D)

quantifies the degree of misalignment of the yield surface normal( ∂F
∂σij

) and the plastic

flow direction( ∂G
∂σij

). In other words, we conjecture that applying the polar rotation to

the yield surface normal produces the plastic flow direction to a good approximation.

We confirmed this conjecture for some material models, as shown in the results section

6.6. However, it requires further empirical and theoretical evaluation.

6.4 Polar Decomposition Algorithm

One issue for polar decomposition on stiffness is that the matrix is not amenable

to traditional numerical methods. During plastic yielding, the stiffness matrix can

become positive semi-definite and therefore is not invertible; traditional methods use

inversion. Moreover, the accompanying zero eigenvalue means that the polar decompo-

sition is not unique. Although a general polar decomposition algorithm exists[31], we

had already embarked on the creation of a new one that was much simpler and equally

accurate for a single, near-zero or zero eigenvalue[58].
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6.4.1 Simple Polar Decomposition for Positive-Definite Matrices

Van Gelder proposed the new algorithm[58], which I implemented, adding code

to increase accuracy and debugging as I went along. The algorithm starts by finding

the polar stretch S of stiffness matrix E and checking the number of near-zero or zero

eigenvalues. We define D, and its relationship to the polar stretch S:

D = ET E = ST S = S2 (6.11)

D = T J T T (6.12)

T’s columns are eigenvectors and J is diagonal with sorted eigenvalues.

S = T
√

J T T where
√

J is nonnegative (6.13)

S =
1

2
(S + ST ), improving accuracy (6.14)

If there are no zero or near-zero eigenvalues, the rotation R can be calculated

with an inversion:

R = E S−1 (6.15)

The correctness of the algorithm follows from D’s properties of being symmetric and

positive semi-definite, and T being orthogonal so that TT = T−1.

6.4.2 Algorithm for a Zero or Near-Zero Eigenvalue

In the case of a zero or near-zero eigenvalue, the general idea is to use Gram-

Schmidt completion to find the zero eigenvalue’s column vector so that it is orthogonal
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to the others in T, necessary for a rotation matrix. We can use the same method as

shown in section 6.4.1 for calculating initial stretch S, J and initial T. We start by

defining a matrix variable C in terms of T. The goal is to find C and use C to calculate

rotation R. The steps of the algorithm are as follows:

C ≡ R T (6.16)

B = E T = R S T = R(T
√

J T T )T = C
√

J (6.17)

Next, we calculate column vectors Cj from column vectors Bj , except the one

corresponding to the zero eigenvalue:

Cj = Bj /
√

J jj for j = 2, . . . , n (6.18)

Finally, we use Gram-Schmidt projection to get the final column of C

C1 = Gram-Schmidt completion of 6D orthonormal basis (6.19)

R = C T T (6.20)

S = sym
(

R−1 E
)

(6.21)

The last step, enforcing symmetry, increases the accuracy of the stretch matrix.

6.4.3 Additional Details

When D has a zero eigenvalue there can be either a negative or positive de-

terminant for D. We choose a positive determinant, as if the matrix had been positive

definite. If the determinant is negative, we enforce this constraint by multiplying the
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first column of T by −1. (An eigenvector multiplied by any constant is also an eigen-

vector of a given matrix). This is done before the calculation B = E T in equation

6.17.

Additionally, to avoid dividing by zero in equation 6.18, we first make the zero

eigenvalue of the diagonal matrix J into a 1. In our implementation, we know that

it corresponds to the first column of C since the eigenvalues were previously sorted in

ascending order.

Finally, we perform Gram-Schmidt on columns 2, . . . , n and normalize them

to make the orthogonalization more accurate. C1 is then replaced with 1 for the first

value and zero for the rest as a normalized “guess” vector before completing the Gram-

Schmidt projection.

6.5 Analysis of Rotation Representation

In order to understand and analyze the rotation portion of the polar decom-

position of the elastic-plastic stiffness, we need to look at how elastic-plastic stiffness is

calculated.

In classical non-associative plasticity (without elastic-plastic coupling), the

elastic-plastic stiffness tensor calculation is of the form

Eep
ijkl = Ee

ijkl − (PijQkl)/η (6.22)

Ee is the symmetric, positive-definite elastic stiffness and PijQkl is a dyad, and η is a

scalar. This is the form found in the earthquake engineering simulator, OpenSees[62].
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The dyad P ⊗ Q which has rank two (equal to that of Pij) even though P ⊗ Q is

a fourth-order tensor. P ⊗ Q has a single non-zero eigenvalue and its eigentensor is

equivalent to the first operand (P) times a scalar. Subtracting a dyad from symmetric

fourth-order tensor Ee changes the stretch in at least one of its second-order eigentensors

and potentially induces a rotation.

In the analysis, we show that the polar rotation rotates P into Q. However,

we note that the rotation from P to Q is not unique.

6.5.1 Origin of Dyad Components

This section covers the origin of P and Q and η from equation 6.22. The

section can be skipped if the details of solid mechanics modeling are not of interest to

the reader.

In addition to the yield function F (σ) and plastic potential function G(σ), the

simulator calculates the derivative of F and G and returns second-order tensors we will

call A and B. These are respectively the yield surface “normal” and plastic potential

surface “normal” described in section 6.3.2.3.

A =
∂F

∂σij
(6.23)

where F is the yield function.

B =
∂G

∂σij
(6.24)

where G is the plastic potential function.
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Next, A and B are each contracted with the elastic stiffness Ee.

Pij = Ee
ijklAkl (6.25)

Qkl = BijE
e
ijkl (6.26)

These are P and Q for our dyad P ⊗ Q. The symbol η is a scalar of the form

η = H + AijE
e
ijklBkl (6.27)

Here, H is the so-called ensemble hardening modulus (a scalar)[12].

For the remainder of the discussion, we will use equivalent 6D vectors with

Mandel components for the equivalent symmetric second-order matrices (as shown in

equation 5.3) and 6D matrices with Mandel components for fourth-order tensors with

minor symmetry as shown in equation 6.6. The use of matrices and vectors allows the

analysis to follow actual numerical implementation used in testing.

6.5.2 Justification for Rotation

This analysis came from Brannon. Let F = P ⊗ Q/η. Substituting F into

equation 6.22 gives

Eep = Ee − F (6.28)

Doing a polar decomposition on Ee − Eep is the same as doing a polar decomposition

of F . F is not positive definite, so we have to use pseudo-inverses where an inverse is

needed. Let F T denote the transpose of F . Then

F T F = ((Q ⊗ P )(P ⊗ Q))/η2 = (pq/η)2(Q̂ ⊗ Q̂) (6.29)
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FF T = ((P ⊗ Q)(Q ⊗ P ))/η2 = (pq/η)2(P̂ ⊗ P̂ ) (6.30)

P normalized to unit length is P̂ , and Q normalized to unit length is Q̂. P̂ is calculated

P
p

where p =
√

(Pi Pi), the magnitude. The scalar q likewise represents the magnitude

of Q. Because of the nature of dyads, the fourth-order right and left polar stretch

tensors are

U = (pq/η)(Q̂ ⊗ Q̂) (6.31)

V = (pq/η)(P̂ ⊗ P̂ ) (6.32)

We seek a rotation R such that

F = R S (6.33)

F = V R (6.34)

Writing these using F = P ⊗ Q/η and equation 6.31 gives

(P ⊗ Q)/η = (pq/η)R(Q̂ ⊗ Q̂) (6.35)

(P ⊗ Q)/η = (pq/η)(P̂ ⊗ P̂ )R (6.36)

Dividing both sides by (pq/η) gives

P̂ ⊗ Q̂ = R(Q̂ ⊗ Q̂) (6.37)

P̂ ⊗ Q̂ = (P̂ ⊗ P̂ )R (6.38)

Finally, we note that

R(Q̂ ⊗ Q̂) = (R : Q̂) ⊗ Q̂ (6.39)
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and

(P̂ ⊗ P̂ )R = P̂ ⊗ (P̂ : R). (6.40)

Therefore, by omitting to take the same outer product on both sides of the equations:

P̂ = R : Q̂ (6.41)

Q̂ = P̂ : R (6.42)

This shows that the rotation tensor from pseudo polar decomposition of Ee−Eep defines

the rotation of Q̂ into P̂ .

6.6 Results

We want to be able to test whether equation 6.41 and equation 6.42 hold for

the material models in our earthquake engineering simulator. We start by normalizing

P and Q from the simulator and call them P̂1 and Q̂1.

P̂1 =
P

‖P‖) (6.43)

Q̂1 =
Q

‖Q‖ (6.44)

Next we rotate P̂1 and Q̂1 using the polar rotation matrix R of the elastic-plastic

stiffness.

P̂2 = R : Q̂1 (6.45)

Q̂2 = P̂1 : R (6.46)

We want to test how close the rotated matrices come to satisfying P̂2 = P̂1 and Q̂2 = Q̂1.
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6.6.1 Testing Methods

I compared the second-order tensor P̂1 of equation 6.43 with P̂2 of equation

6.45 by two methods. The first method computes the Euclidean distance between the

two tensors:

difference =
√

∑

(P̂ij1 − P̂ij2)2 (6.47)

Since both tensors were normalized (magnitude of one) and the column vectors of R

were normalized, the maximum possible difference was two.

The second method uses the definition of dot product

P̂1 · P̂2 = |P̂1||P̂2| cos θ (6.48)

The difference between tensors is defined as the angle θ between P̂1 and P̂2. If P̂1 and

P̂2 are the same, θ is zero and the maximum difference is 2π radians. Although this

definition was originally applied to vectors, we apply it here to second-order tensors. I

applied the same tests to Q̂1 of equation 6.44 and Q̂2 of equation 6.46.

6.6.2 Tests of Material Models

We took measurements from similar simulations with three material models:

an associated material (Drucker-Prager), a non-associated material (Drucker-Prager

with a Von-Mises yield surface), and a non-associated material with elastic-plastic

coupling(Dafalias-Manzari).

In the case of Drucker-Prager, A and B were equivalent and all of the rotations

were the identity matrix. A and B represent the yield surface “normal” and plastic
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potential surface “normal” as described in section 6.3.2.3. If A is equivalent to B, then

P̂1 is equivalent to Q̂1. This was exactly what we expected for an associated material and

clearly equations 6.45 and 6.46 were satisfied with an identity matrix for the rotation.

The Euclidean test resulted in all zero values and the values for θ were all near zero

within numerical precision.

For the first non-associated material (Drucker-Prager with a Von-Mises yield

surface), the results were quite interesting. Figures 6.2 and 6.3 show results for step

124, the final step in the simulation.

Figure 6.2: Non-Associated Model,θ between rotated Q̂ and P̂

The histograms show two distinct buckets, at zero and 1.26 radians. However,

if we show only the cases where the rotation is not the identity, the zero bucket alone

remains. (See figure 6.4).

The significance for this is that in the calculation of stiffness, below a certain

threshold, only the elastic stiffness is used. Non-associativity still holds in P̂ and Q̂, but

they are not used in the calculation of stiffness. The stiffness is elastic (fully symmetric
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Figure 6.3: Non-Associated Model,θ between rotated P̂ and Q̂

Figure 6.4: Non-Associated Model, θ difference between rotated P̂ and Q̂ for non-
identity rotations

and positive definite) and its polar rotation is the identity. Therefore, when the stiffness

is elastic and the material is non-associated, the polar rotation does not reflect the

rotation between P̂ and Q̂.

Finally, we see a full range of values for Dafalias-Manzari, with two peaks

(figure 6.5). We have shown the data set using Euclidean difference rather than θ

because 0-100% can be more easily mapped to a 0-2.0 range. We expected the main

bucket to have shifted right of zero at least 10% (mapping to 0.2 in the given range)
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due to elastic-plastic coupling. Instead we see 2 peaks, near 0.4 and at 2.0, and a full

spectrum of values. Thus, there are additional factors that remove this model from the

class that can get a meaningful rotation from the polar decomposition of stiffness.

Figure 6.5: Dafalias-Manzari model,Euclidean difference between rotated Q̂ and P̂
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Chapter 7

Visualization of Second-Order, 3D,

Non-Positive-Definite Symmetric

Tensors

Chapter 4 details previous work with glyph, hyperstreamline and topology

approaches for visualizing second-order symmetric tensor fields. Most fall short in ad-

dressing the needs of solid mechanics engineering because they do not find features

of interest to the domain, or are limited to positive-definite or 2D tensors. In this

chapter, we start with the features of interest and then present some new visualization

approaches, experiments and results.
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7.1 Stress and Strain Tensor Features

Tensor fields resulting from Geomechanics computations are mostly related to

the state of stress (sij) and strain (ǫij). Both are symmetric, and non-positive definite.

Stress is characterized by five basic modes, and a stress tensor may represent a pure

mode or some combination of them. (Strain can likewise be characterized). The modes

are:

1. spherical tension (three equal positive eigenvalues).

2. spherical compression (three equal negative eigenvalues).

3. triaxial compression (two equal eigenvalues with the distinct eigenvalue more com-

pressive than the repeated eigenvalues).

4. triaxial tension (two equal eigenvalues with the distinct eigenvalue less compressive

than the repeated eigenvalues).

5. pure shear (one zero eigenvalue, with the others equal and opposite in sign).

An isotropic stress (with three equal eigenvalues) corresponds to pressure which

is equal from all directions. This case is similar to isotropy for DT-MRI [79] but can rep-

resent either compression (negative eigenvalues) or tension(positive eigenvalues). Triax-

ial tension or compression produces an axisymmetric stress (symmetric about one axis)

and it is characterized by two equal eigenvalues. A state of pure shear stress is where

one eigenvalue is zero and the other two are equal and opposite in sign.
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7.1.1 Stresses in Geomaterial Solids

Stress tensors are of particular importance in solid mechanics, and Geomechan-

ics as well, as they are useful as failure indicators. A large majority of Geomechanics

theories deal with elastic-plastic behavior and failure of solids. Failure is based in stress

space, putting a strong emphasis on understanding of stress tensor field. According to

Jeremić, Geomechanics uses stress tensors to understand the behavior of soil and objects

embedded in the soil as support for structural elements above. For example, concrete

piles support buildings, bridges, or water tanks. The main features of interest are:

• Zones with positive stress (tension), particularly in piles. Tension results in crack-

ing concrete.

• Zones with large shear stresses. In soil this can cause large shear deformations

and shear failure.

• Zones of sign changes. A sudden switch from compressive to tensile behavior

results in tensile failure.

Concrete and soils can withstand large compressive forces but fail under tension or

in shear [39, 40, 36, 41]. These critical features are usually present at the interface

between stiff concrete piles and soft surrounding soil, but they can occur anywhere in

the solids[60].

79



7.2 Reynolds Glyphs

We used Reynolds glyphs to visualize the mode of stress that a solid is vulner-

able to after it reaches the yield point. This was a test for the decomposition method

represented in chapter 6. We hoped the visualization would show (a) regions that had

become less stiff and (b) the mode of stress that would cause maximum deformation in

those regions.

Reynolds glyphs visually depict characteristic modes of stress or strain [6].

The formula for a point on the surface of the second-order Reynolds glyph, using tensor

notation from chapter 2 is:

c = ni σij nj (7.1)

Here, i, j range over 1, 2, 3 and 1, 2, 3 are Cartesian axes. n represents a 3D normalized

vector of the direction cosine perpendicular to the plane of interest. In other words,

each vector n represents a point on a unit sphere centered at (0, 0, 0).

Reynolds glyphs, coupled with color mapping, can clearly distinguish the five

modes of stress. For instance, isotropic tension would be represented as a red sphere, and

isotropic compression would be a blue sphere. For triaxial tension or triaxial compres-

sion, formula 7.1 produces an axisymmetric Reynolds glyph. The axis of symmetry is

aligned with the eigenvector of stress corresponding to the distinct eigenvalue as shown

in figure 7.1b. The disk shape in figure is similar to planar anisotropy for DT-MRI

second-order tensors, also characterized by two equal eigenvalues [79].
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Spherical Tension Triaxial Compression Pure Shear

(a) (b) (c)

Figure 7.1: Reynolds Glyph representations of modes of stress. Cool colors (blue and
cyan) represent negative values, hot colors (red and yellow) represent positive. The X,
Y, and Z axes are red, green, and blue respectively.

Pure shear produces a glyph such as the one in figure 7.1c. The distinct

butterfly appearance of pure shear is caused by equal magnitude and opposite values

across orthogonal directions on a single plane. This is the plane where shearing occurs;

in this example it is the X − Y plane.

7.2.1 Graphical Issue

One graphical issue for Reynolds glyph arises when the scalar value c stretch-

ing the vector n is negative. The direction of the vector is reversed, and calculating

the correct surface normal is more difficult. However, since the underlying tensor is

symmetric, we can assume the glyph will be likewise symmetric. We can draw the point

and calculate the surface normal without reversing the direction of n since both n and

-n are on the surface of the glyph. We simply color them both with the magnitude of c.
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7.2.2 Associated Scalar Color Fields

As noted in chapter 6, under sufficient stress a solid can yield, experiencing per-

manent deformation. When this happens, one or more eigenvalues reduce in magnitude.

To find regions losing stiffness, we use the lowest eigenvalue from the decomposition of

stiffness detailed in chapter 6. Coloring by minimum eigenvalue highlights regions where

significant loss of stiffness and permanent deformation have occurred.

We also use the Lode angle θ, a stress invariant, to classify the mode of devia-

toric stress[51, 56]. The original use for Lode angle was in the formulation of yield func-

tions for isotropic solid material models, as well as others based on stress eigenvalues[12].

(More details on the yield function can be found in chapter 6.) The Lode angle is for-

mulated:

θ =
1

3
sin−1[

(J3

2

)( 3

J2

) 3

2

] (7.2)

J2 is the deviatoric stress invariant

J2 =
1

2
‖ S ‖2 (7.3)

where S is the deviatoric part of the stress tensor σij .

Sij = σij −
1

3
σkkδij (7.4)

Here δij is the Kronecker delta, the 3x3 identity matrix. J3 is the determinant of Sij .

Figure 7.2 shows a yield surface (zero isosurface of the yield function) for a typical

geomaterial, and a slice of the surface. The coordinate system is the orthogonal eigen-
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vectors (“stress space”) rather than Cartesian. The slice illustrates the continuous and

reflective nature of the classification scheme despite ordering of eigenvalues.

Figure 7.2: Yield Surface (Stress-Space Isosurface) for an isotropic material and Lode
angles for single slice. Image source: [12] TXE stands for triaxial extension, TXC is
triaxial compression, SHR is shear, BXC is biaxial compression, and BXE is biaxial
extension..

Figure 7.3: Lode Angle Color Scale and Glyphs

Figure 7.3 shows a rainbow color mapping of Lode angle, and the glyph shapes associated

with the scalar values.
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7.2.3 Experiment

We tested our technique on two simple experiments from Geomechanics. Both

experiments consisted of 224 finite elements, each with 8 integration points on an irreg-

ular grid; a total of 1792 points for the volume. The experiments were run on OpenSees,

a finite-element simulator for performance of structural and geotechnical systems sub-

jected to earthquakes [62]. Data for the visualization was gathered during the runs,

which took 10.5–12 minutes on an Intel 6600 2.4 Ghz dual core desktop with 2.0 gi-

gabytes of RAM. The visualization runs at 1–4 frames per second, depending on the

window size. Excerpts are shown in the figures. The software and experiment scripts

are available from the authors and will soon be available through the VEES project

website [57].

The experiments started with self-weight analysis of the soil, compressing along

−Z, for 25 time steps. This is a common practice when studying soil behavior. The

initial compression from the soil’s own weight induces deformation and may also change

the stiffness, depending on the model. The second part of the experiment was two

point loads on the top of the volume. The loads included a small component along

−Z (0.9659 kiloNewtons) and a large lateral component (1294 kiloNewtons). This part

of the experiment ran for another 100 steps. Figure 7.4 shows the volume colored by

displacement (Euclidean distance from initial position) on the last time step. The black

arrows point to where the loads were applied along +X. In Figure 7.5a, 7.5b, 7.6a

and 7.6b, we drew glyphs for each integration point in the volume, and the glyph size
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Figure 7.4: Deformation (Euclidean distance), time step 124. Arrows indicate location
and direction of applied point loads. Drucker-Prager material model.

was scaled by the size of the encapsulating finite element. These eigentensor glyphs

were colored by the lowest eigenvalue and scaled across all time steps to give an overall

idea of softening or hardening. In the case where the solid had not started permanent

deformation (yielded), we drew spheres to indicate the elastic, isotropic material model.

We used a black cube for the case of a negative eigenvalue in the stiffness tensor so the

engineers could quickly identify singularity and the inability of the simulator to produce

the mode of the instability.

The first soil material was Drucker-Prager. The material simply fails under

tension, but it remains unchanged under compression (a “non-hardening” material).

There were no changes in material stiffness during the self-weight steps. The material

lost stiffness during the point load stress regime in the neighborhoods around and be-

neath the point loads, as shown in figure 7.5a. The mode of stress the solid became

vulnerable to was similar to applied stress in the regions with loss of stiffness; triaxial

compression in front of the point loads along the X axis, shear along the sides of the
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point loads and between them, and triaxial tension behind the applied loads. The user

can quickly pick out these modes with Lode angle coloring (see figure 7.5b). Blue and

cyan highlight the compression in front of the point loads, yellow trailing behind indi-

cates tension, and green indicates shear. In this simple example, glyphs show a clear

change in orientation and indicate principal stress directions (eigenvectors).

(a) (b)
Lowest eigenvalue scalar coloring. Top view (from +Z), Lode angle scalar coloring.

Figure 7.5: Drucker-Prager material model, time step 124.

The second simulated material was Dafalias and Manzari’s plasticity sand

model [15]. The model’s stiffness is pressure-dependent and non-associated. In or-

der to make the experiment repeatable we used the material constants given in the

article, with the exception of the initial void ratio (e0). This material softens when it is

denser (with smaller void ratios). Since we wanted to test our method’s ability to detect

softening, we reduced e0 to 0.65. In this experiment, self-weight induced hardening. The
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greatest hardening occurred at the bottom of the volume, where the finite-element nodes

were fixed and experiencing the greatest load from above. At first, stiffness increased

with the depth of the volume, as expected with self-weight loading. With continued

self-weight, loss of stiffness occurred in the volume we saw some integration points

with negative eigenvalues. As the experiment continued, loss of stiffness occurred along

the side boundaries of the volume, but there was frequent change between elastic and

elastic-plastic states. It was difficult to correlate the stress to the behavior because of

the changing yield surface and non-associativity. However, we did notice loss of stiffness

on the top surface near the applied point loads late in the experiment (Figure 7.6a).

(a) (b)
Lowest eigenvalue log scalar coloring. Lode angle scalar coloring.

Figure 7.6: Dafalias-Manzari material model, time step 124.
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7.3 Plane-In-A-Box Glyph

The motivation for our new glyph, plane-in-a-box, is to visualize high shear

(both orientation and magnitude) as well as discriminate tension versus compression.

The plane-in-a-box glyph is quite similar in appearance to tensor ellipsoids for the case

when there is strong planar anisotropy. This glyph presents the same amount of relevant

information as tensor ellipsoids using a simpler representation.

(a) (b)
Single plane in enclosing box. Side view of a volume of plane-in-the-box glyphs.

Figure 7.7: Plane-in-a-box glyph.

The idea of plane-in-a-box is to create a plane with limited extent at each sample point.

The size of the planar glyph is limited by a box whose edges are half the distance to

each of the neighboring points. If the point is on a face of the volume, we simply extend

it out a distance to half the distance of the neighboring interior point. Occlusion is
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reduced by scaling the planar glyphs while maintaining the general orientation. We

opted for this simpler glyph since we are primarily interested in regions characterized

by high shear. Pure shear exists on a single plane, and both triaxial tension and triaxial

compression have a planar component. Thus, mapping the tensors to planar glyphs

is quite natural. The plane spans the eigenvectors associated with the largest (major)

eigenvalues, and the plane normal implies the eigenvector direction associated with the

smallest (minor) eigenvalue. The plane itself can also be colored or filtered according

to scalar parameters of interest. We explore the use of four scalars in the hope that

they will help us find features of interest, namely: high shear, tension, and changes from

compression to tension.

7.3.1 Data Structures and Algorithms

The plane-in-a-box glyph has two requirements. First, the sampled points

must lay on a mesh, preferably a grid (although the grid need not be regular). In either

case some connectivity among sample points is necessary to establish the locations of

the edges of the box. For rectilinear data, we simply sort the points by the Z, Y, and

X axes during preprocessing. Once the points are read in, we can deduce connectivity

of neighboring points by checking the next and previous row, column, and slice.

We came to realize that finite element results do not necessarily lie on straight

lines, as shown in 7.13. There are pie-shaped elements and variable sizes. For these

data sets we take advantage any type of regularity that exist. In our case, slices on the

Z plane were regular distances apart. We run Delaunay triangulation on the remainder

89



to get connectivity. For both cases, connectivity is stored in an adjacency list.

7.3.1.1 Creating the Box and Finding Edge-Plane Intersections

The first step in creating glyphs is to create the box whose edges will limit the

plane. By iterating through the linked list of rectilinear neighbors, we can determine the

minimum and maximum X,Y, and Z distances to neighbors. We set box edges at half

the distance to the neighbors and can even reduce the scale of the distance, if desired.

Figure 7.8: A box is formed around a point, based on the location of neighboring points.

For Delaunay neighbors we use a slightly simpler technique. We check the

distance to each neighbor and select the one that is closest. We halve the distance

and set that as the bounding distance along axes for which we have no rectilinear

distances. This gives us good guarantees against polygon overlap although it may not

be proportional to distance between points in all three directions.

Once we have the distances, we set the corners of the box using a lookup table

which matches minimum or maximum X,Y, and Z to each box corner.

The next step is to create the plane, finding which edges of the box it intersects
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and where on the edge the intersection occurs. We have a plane defined using point-

normal form, where the normal is the eigenvector corresponding to the minor eigenvalue.

We convert it to general form

Ax + By + Cz + D = 0 (7.5)

where A, B, and C are the X, Y, and Z components of the normal respectively. With

the sample point at x0, y0, z0,

D = (−1 ∗ norm[X] ∗ x0) − (norm[Y ] ∗ y0) − (norm[Z] ∗ z0) (7.6)

Then, for each edge of the box, we use Bourke’s algorithm [9] to find the

intersection by extending the edge until it touches the plane.

Pintersect = t(P2 − P1) (7.7)

where P1 and P2 are the points forming an edge of the box as shown in figure 7.9.

Substituting t(P2 − P1) into our implicit plane equation yields

A(x1 + t(x2 − x1)) + B(y1 + t(y2 − y1)) + C(z1 + t(z2 − z1)) + D = 0 (7.8)

and solving for t gives

t =
Ax1 + By1 + Cz1 + D

A(x1 − x2) + B(y1 − y2) + C(z1 − z2)
(7.9)
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Figure 7.9: Intersection of plane and box edge. P0 is the Gauss point.

The intersection occurs at P1 + t(P2 − P1). Once we have an intersection, if it lies on

the edge between P1 and P2, we update the box’s edge index and store the intersection

point in its marching cubes array.

In summary, we begin by creating a box which is limited by half the distance its

neighbors. We calculate A, B, C, and D for our plane, based on the point location and

its normal. Then we check each edge of the box to see if the plane intersects it, saving

the intersection point Pintersect and building an edge intersection case index. Finally,

the edge intersection index is cross–referenced to a Marching Cubes index [52].

7.3.1.2 Marching Cubes for Simple Planes on an Irregular Grid

After extracting the intersections of the planes with the edges of the cell con-

taining the tensor, the next step is the creation of the triangles that make up the plane.

Our algorithm uses a variation on the well-known Marching Cubes [52].

Our algorithm differs in two ways:
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Figure 7.10: Marching Cubes cases. (256 total with symmetry). Source: [52].

1. The index is built on edge intersections rather than a boolean for above or below

an isovalue.

2. The box is composed of variable-sized quadrilaterals rather than a cube.

We deal with the first item by creating a mapping from each of the 256 march-

ing cubes case indices to its corresponding edge index and save them in our reverse

lookup table. More specifically, we iterate through each marching cubes triangle case

array, building an active edge index. Then we make a hash table with the edge index as

the key and the marching cubes index as the value, for fast retrieval. Figure 7.11 shows

an example mapping. The hash table is used just before the call to marching cubes.

Below is the pseudo code for the algorithm.

int plane_in_a_box(int i)

{

calculate A, B, C, D

make_box( i, box, plane_in_a_box_scale );

for( j = 0; j < 12; j++ ) /* box edges */

{

calculate t
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Figure 7.11: Mapping from plane-edge intersection to Marching Cubes index

calculate edge-plane intersection

if ( intersection is within edge )

{

/* copy edge intersection:

2 out of 3 dimensions identical */

mc_edges[j][X] = box[cube_edges[j][1]][X];

mc_edges[j][Y] = box[cube_edges[j][1]][Y];

mc_edges[j][Z] = box[cube_edges[j][1]][Z];

mc_edges[j][edge_dim[j]] =

touch_plane[edge_dim[j]];

/* update edge case */

index = index + CASE_INDEX[j];

}

}/* for each box edge */

/* cross reference MC index */

index = get_value( MC_hash, index );

marching_cube( i, index, mc_edges );

}

Despite our box forming a hexahedron instead of a regular cube, we have

found that marching cubes works quite well. Two facts help us. First, when we form

the box around a sample point on the plane, we guarantee the box will enclose the

plane. Second, because we build the case using a plane that spreads to the limits of
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the box, we never see the ambiguous marching cubes indices. Simply, since we build a

continuous surface, we do not have holes. However, two other types of ambiguous cases

Figure 7.12: Sliding the box (brown to blue) to resolve case of edge lying in the plane.

can occur. One case is where an edge of the box lies in the plane. For such a plane, there

are an infinite number of intersection points for the edge and the plane. Furthermore,

three edges will claim intersection for each corner of the edge in the plane. In this case,

a proper marching cubes index cannot be formed. The second ambiguity is where the

plane intersects an edge at a box corner. As with the previous case, three edges will

claim intersection for each corner of the edge in the plane. The simple solution is to shift

the box a tiny amount along one axis and recalculate. We found this solution effective;

we selected the first of multiple possible case indices, and shifted the box back before

building the plane’s triangles.

We predicted that we would see just a few different marching cubes cases as

the point would sit in the middle of the box. This soon proved wrong as the sample

point may lie almost anywhere within a skewed box.
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7.3.2 Associated Scalar Color Fields

Stress features of interest for Geomechanics include tension, shear, sudden

changes from compression to tension. We test four scalar measures for color mapping,

opacity and filtering the plane glyphs. We provides several different scalar measures to

aid exploration of a data set, and filtering mechanisms to home in on areas of interest

in the volume. Three of the scalar measures come from Seismology and the fourth from

tensor topology.

The scalar features are (i) signed isotropy (with both linear and log scaling),

which is equivalent to spherical tension and compression from solid mechanics (ii) Seis-

mic Double Couple (DC), which is equivalent to pure shear from solid mechanics (iii)

Seismic Compensated Linear Vector Dipole which is equivalent to triaxial tension or

triaxial compression from solid mechanics. (iv) Eigen difference [84].

7.3.3 Seismic Moment Tensors

Seismologists use a seismic moment tensor Mij for a general representation of

the seismic source [19]. Seismic moment tensors, like stress tensors, are symmetric and

non-positive-definite. However, they differ in a couple of very important ways.

Seismic moment tensors or acoustic emission moment tensors are created from

a measured event such as an earthquake or cracking solid. Sound waves are emitted

at the event and can be measured. Thus, one major difference is that moment tensors

represent a strictly elastodynamic source [43]. Second, in Geomechanics, a stress tensor

relates to forces applied on the exterior surface of a volume. Moment tensors instead
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relate to forces that cause displacement across an internal surface, where the internal

surface represents a buried fault [2].

Dreger et al. note that Mij is commonly decomposed into isotropic, double

couple (DC) and compensated linear vector dipole (CLVD) components, where each

of the components of the moment tensor decomposition is represented as a percent-

age of the total [19, 46, 43]. The same numerical features select for spherical ten-

sion/compression, shear, and triaxial tension/compression respectively. At the time

this research was performed, however, we were not yet aware of the basic categories of

mechanical stress, as described in section 7.1.

7.3.3.1 Isotropic and Deviatoric Components

Finding these scalar components starts with finding the eigenvectors and eigen-

values of Mij = T J T T . A diagonalized moment tensor J can be further decomposed

into isotropic and deviatoric parts. A purely isotropic tensor is characterized by three

equal eigenvalues. The isotropy in a moment tensor represents a change in volume. Pure

isotropy in a moment tensor is comparable to an ideal explosion (positive eigenvalues)

or implosion (negative eigenvalues) [20]. The equivalent for stress is spherical tension

or compression. The isotropic portion is the identity matrix scaled by the mean of the

three eigenvalues. The deviatoric component is the remainder of the original matrix

after the isotropic component has been removed.

Below is the mathematical notation for the isotropic and deviatoric components

of matrix J , where the trace (tr) is the sum of the diagonal elements and m∗
i is Jii −

97



tr(J)/3. Here, m∗
1 has the smallest absolute magnitude and m∗

3 the largest.

J =
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3 0 0
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0 0 tr(J)
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2 0
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(7.10)

7.3.3.2 Two Vector Dipoles

Moment tensor elements represent dipoles. A dipole is composed of two equal

and opposite vectors laying along an axis orthogonal to both of them. The physical

meaning is the direction and angle of tectonic plate movement along opposite sides of

a fault. According to Dreger, double couple (DC) consists of two linear vector dipoles

of equal magnitude but opposite sign, resolving shear motion on faults. The shear

is oriented 45 degrees to the principal eigenvectors of Mij [19]. In mechanical terms,

if the force in the double couple exceeds a material’s threshold, a shearing event will

occur [20], or displacement along the fault plane (parallel to the largest stress). In a

pure DC event, the eigenvalues are proportional to 1, 0,−1 [43]. In this section we use

DC and pure shear interchangeably.

Compensated linear vector dipole (CLVD) refers to when “a change in volume

is compensated by particle motion in the plane parallel to the largest stress” [20].

This may be a mechanism for deep earthquakes [46]. CLVD is modeled by eigenval-

ues proportional to −2, 1, 1, reflecting particle motion. Figure 4.9 shows the failure

mechanisms associated with pure isotropy, DC, and CLVD.

The contribution of DC and CLVD to the deviatoric component of a moment
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tensor can be calculated as follows: For components of the diagonalized moment tensor

without isotropy, m∗
1, m

∗
2, m

∗
3 such that

|m∗
3| ≥ |m∗

2| ≥ |m∗
1| (7.11)

F = −|m∗
1|

|m∗
3|

(7.12)

F is the ratio of the smallest to largest absolutes of the eigenvalues and we expect a value

of 0.0 for pure DC and 0.5 for pure CLVD. Note that F does not distinguish triaxial com-

pression (m∗
i ∝ (1, 1,−2)) and triaxial tension (eigenvalues m∗

i ∝ (−1,−1, 2)). However,

one could examine the sign of m∗
1, and create a scalar that gives similar information to

the Lode angle.

Assuming the deviatoric is a result of only DC and CLVD,

mdeviatoric =

m∗
3(1 − 2F )
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(7.13)

For scalar features there are two quantities:

DC = m∗
3(1 − 2F ) (7.14)

CLV D = m∗
3F (7.15)
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Following Anderson and Finck [4, 20], percentage of deviatoric that is CLVD can be

calculated:

2m∗
3F

|2m∗
3F | + |m∗

3(1 − 2F )| (7.16)

The CLVD is doubled so there can be a range of 0.0 − 1.0 instead of 0.0 − 0.5. We use

the estimate ‖ 2F ‖ for culling and coloring glyphs for simplicity.

Zheng, et al. categorized double degenerate points in a second-order symmetric

tensor field by first sorting eigenvalues by absolute magnitude: |λ1| ≥ |λ2| ≥ |λ3|.

Planar degenerate points had |λ1| = |λ2| ≥ |λ3| and linear degenerate points had

|λ1| ≥ |λ2| = |λ3|. [84]. They proposed a scalar K as:

K = 2λ2 − (λ1 + λ3) (7.17)

where K is a positive value for planar degenerate tensors (identical major and medium

eigenvalues), and a negative value for linear degenerate tensors (identical medium and

minor eigenvalues). We were curious to see how the scalar would operate on our tensor

field.

7.3.3.3 Scalar Calculation and Meaning

We built an application with a menu for selecting a feature for coloring the

planes and a feature for setting plane opacity.

Since the two features, DC and CLVD, can be expressed as percentiles, they

are automatically scaled from 0 to 1. For isotropy and eigen difference, we set the zero

valued features (the midpoint) at 0.5. We scaled cool colors (blue) below, from 0.5
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to 0 for negative values and hot colors (red) for positive values scaled up from 0.5 to

1. Opacity can provide some filtering effect as the lowest values are fully transparent.

Medium to high values appear more solid and their geometry is highlighted, similar to

volume rendering, and we mapped scalars to opacity with the same scale.

The application also has sliders for selecting a range of values for features. For

example, a user can select strictly positive isotropy combined with high CLVD. Such

combinations allow users to search for domain-specific indicators. The aforementioned,

for example, can signify a crack when the data set is composed of moment tensors

from acoustic emissions [20]. With thresholding, the shape of regions are also clearly

delimited. Essentially, the user can create isosurface and iso-volume-like selections.

However, the surface is not smooth, being composed of individually oriented planes.

Finally, the application can show the inverse of a selected feature range, providing

greater flexibility.

7.3.3.4 User Interaction

Rather than thresholding over the entire volume, a user may wish to explore

from points of interest on outwards. We provide a pointer that the user can move around

the volume to select various seed points. Then, on each iteration, neighboring planes get

painted. This gives an animation effect of oriented planes growing out of the seed point.

Thresholding constraints may also be applied, as desired. For this type of interaction,

we built two data structures that save state between animation frames. One is a draw

list where each entry refers to a sample point in the volume. This is initialized to all
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zeros to indicate no planes should be drawn; only non-zero entries have their planes

drawn during an iteration. The second is a queue that holds the sample point numbers

to be added to the draw list on the next iteration. In addition, the point adjacency

is stored in an adjacency list, implemented as an array of linked lists. The algorithm

proceeds as a simple breadth first traversal. At first glance, the extra complexity may

seem unnecessary; after all, for regular data we can simply use the stride of the length,

width, and slice of the rectilinear sorted data. However, in many cases, Geomechanics

data is not regular. Gauss points across finite elements are not lined up along X and

Y, as shown in figure 7.13. We would still like to explore a region from a selected seed

point, and breadth first traversal of the mesh works well for this.

After initialization with the user’s selected seed points, we take each point

from the queue, add it to the draw list, and check its linked list of neighbors. Here

again, we depend on having neighbor connectivity available. We do a check three things

before we consider adding a new point to the next iteration’s queue. The sample point

must meet all of the user’s constraints, and neither the current draw list nor the current

queue may already contain it.

The data structures and process are very similar to Gibson’s Chainmail algo-

rithm [23]. The Chainmail algorithm enables fast deformation of volumetric objects,

composed of objects such as nodes and points from Finite Element analysis. The anal-

ogy is that points and nodes move as if joined by a chain link mesh. If a node is moved

beyond a constraint, neighboring nodes will also move. Similarly, on each iteration of our

algorithm, new candidates are queued breadth-first and previously selected candidates
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are tested against the constraints.

7.3.4 Data Meaning

The particular data sets used in this paper are related to two applied Geome-

chanics problems. The first data set represents a finite sized model with two point

loads on top, the Boussinesq problem (i.e. [50]). The problem is simple enough that

the results are known in advance and represents an excellent verification procedure. In

addition, symmetry planes in the model can be used for verification of numerical and

visualization procedures.

The second data set is from a dynamic, seismic bridge simulation. It represents

a stress field from one time step of an elastic-plastic, dynamic simulation of a soil–

foundation–structure (SFS) bridge system [8, 7]. This data set involves large ratios

of stresses between stiff concrete in columns of the main structure, and the soft soil

beneath. In addition, the main characteristics of the stress fields are not known in

advance as we use simulations to gain a better understanding of the behavior of the

SFS system and the interactions of its components during seismic events.

7.3.5 Data Representation

The volume of the bridge–soil system is built from finite elements. Each ele-

ment has a hull of vertex nodes that may be shared with neighboring elements. The

shape of an element need not be rectilinear. Within each element are gauss points.

That is, the Gaussian method is used to locate points that produce the most accurate
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Mesh of Finite Elements Single 8-Node Element (Gauss points are data locations)

Figure 7.13: Finite Element Data Set

integration.

As the simulation progresses, nodes move, inducing stress at the gauss points.

Hence, the stress tensor field consists of the induced stresses at these gauss points.

7.3.6 Results

We tested our application using two data sets, each of which was a single time

step in a Geomechanics simulation. Both data sets consisted of a field of stress tensors

for geomechanical soils and solids, as described in section 7.3.5.

The first was the Boussinesq point load, where force was applied at two points

on the top of the volume. The second was a bridge supported by two piles in soil. In

the simulation, force was applied to one side of the bridge, followed by seismic shaking.
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7.3.6.1 Boussinesq Point Load

Figure 7.14a shows isotropy in the double point load data set. Linear scaling

of the color map highlights the compressive and tensile forces at the points they were

applied.

The eigenvalues at these points were extremely high, so the linear scale caused

the rest of the volume to appear to have zero isotropy evenly throughout. However,

when we change to a log scale and scale the opacity as well, the variation from negative

to positive is strongly emphasized (Figure 7.14b). Here, advantage of the isotropy

scalar is clear. It shows not only the type of stress, but also its degree. There is high

tension (positive isotropy) below one point load, high compression below the other, and

a mixture on the surface.

(a) (b)
Linear rainbow scale color, arrows show applied loads Log scale color and opacity.

Figure 7.14: Boussinesq dual point load, isotropy color map
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All glyphs Thresholding, 0.50 - 0.715 Thresholding, 0.975 -1.00 (pure shear)

(a) (b) (c)

Figure 7.15: Double point load, DC color map (CLVD is the dual and has the same
appearance but with blue instead of red)

Figures 7.15a, b, and c show the coloring for the double couple feature (1.0− ‖ F ‖).

The range of colors tells us that the anisotropy types range from pure shear (DC) to

midway between pure shear and triaxial tension or compression(CLVD). We omitted

CLVD since it is calculated as the dual of DC and would appear as blue–green color

mapping instead of green–red. It is clear regions with the pure shear feature are distinct

from regions with high isotropic tension or compression.

In Figures 7.15b and c, we see the results of DC thresholding. Both figures show greater

than 50% similarity to the DC feature, but the first figure has a color representing lower

similarity overall. We found it interesting that using a lower threshold selected the very

noisy data around the points where stress was applied. The region most closely matching

a DC feature was where we expected the shear to occur – on the plane between where
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the two opposing forces were applied. Combinations of constraints on several types

of features may lead to better understanding of stress within a volume, in addition to

a scalar representing magnitude of anisotropy. For example, isotropic stress is largest

at the point where the loads are applied (Figure 7.14). The DC feature is strongest

on the plane between the two opposite loads, a very different region of the volume

(Figure 7.15c). Positive isotropy in combination with anisotropic behavior might lead

to fracture.

7.3.6.2 Bridge Pile Data Set

Figures 7.17a and b show the entire volume for bridge supports embedded in

soil. The piles penetrate halfway down onto the soil. In the simulation, the applied

force, shown as the yellow arrow in figure 7.17a, pushed the bridge support to the right.

The expected behavior is is that the left side of the pile will be under tension and the

right side under compression, as shown in figure 7.16. The eigen difference coloring

Figure 7.16: Yellow arrow shows applied pushover force. Red arrows show resulting
tension, and blue arrows show compression.
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highlights the changes in stress with red and blue coloring above the surface and within

the piles. The sharp red-blue contrast along the upper neck of the piles and in the

bridge emphasizes that type of stress is flipping from linear to planar. In figure 7.17b,

within the neck of the piles, there is a red line indicating high DC. Therefore, there is

pure shear occurring at the location of the flip.

Eigen difference (log scale) DC coloring

Yellow arrow shows applied force.

(a) (b)

Figure 7.17: Bridge Data Set.

There is a circular appearance in the planes’ orientation at the center of the volume. This

is attributable to boundary effects in the simulation and represents a very important

finding as it tells us that the model needs to be enlarged in order to more realistically

simulate the half-space. Figure 7.18 shows thresholding by isotropy. This is an example
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of using the inverse of a threshold range, eliminating everything in the range from 0.25-

0.75. The figure is colored by log scale isotropy and shows ranges of 0.0-0.25 representing

compression and 0.75-1.0, representing tension. The bridge pile on the right has a color

change from red to blue just above where the pile enters the soil, indicating that the

stress has switched from tension to compression. This is one of the critical features

in Geomechanics that can result in tensile failure. The isotropy figure also shows a

Figure 7.18: Bridge data set, log scaled isotropy, 0.0-0.25 and 0.75-1.0

shadowing effect. Shadowing comes from an analogy between the applied force and

light, where a supporting member may absorb or block the force. Its shadow is an area

under less stress. The shadowing is indeed interesting as it directly and visually conveys

information about an important physical behavior, namely the back bridge support will

be shadowed by the front bridge support, and savings can be made in reinforcement
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steel for shadowed bending.

Figure 7.18 also presents a visual proof that the model can and needs to be

extended in the horizontal direction in order to simulate the half space more realisti-

cally. Ideally, the simulation would be sufficiently large that the boundaries would be

unaffected by the applied force. However, this is always a tradeoff with computation

cost and even with this smaller model we can get meaningful results.

7.3.7 Conclusions

One of the goals of plane-in-a-box was to find planes of shear. This was ac-

complished in the case of pure shear or DC, where there is one zero eigenvalue and

shearing occurs in the plane of the two eigenvectors with non-zero eigenvalues. Here,

using the zero eigenvalue’s eigenvector as the plane normal makes perfect sense. In the

case of CLVD, there is not a single shearing plane. Maximum shear occurs at 45 ◦ from

the plane of eigenvectors with equal eigenvalues. In this case it might make more sense

to visualize the planar part (the plane of eigenvectors with equal eigenvalues) or use a

different type of glyph than a plane. No planar glyph makes sense for pure isotropy.

Isotropy turned out to be the most useful feature among those we tried. Along

with thresholding, it highlighted information about the materials’ physical behavior

under stress. The scalar K was the least useful as it could really only apply to positive

definite data. Both triaxial compression and triaxial tension are by the definition planar

degenerate, yet have K values of opposite sign; both should have a positive K value.
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7.4 Continuous Visualization

Continuous visualization such as hyperstreamlines have been used successfully

for fluid dynamics data, DT-MRI data, and 2D stress tensor fields. In this section, we

explore approaches to visualizing stress, strain or stiffness eigenmode tensor fields using

a continuous visualization.

7.4.1 Interpolating to a Regular Mesh

One issue for continuous visualization of these tensor fields is that the finite

element method is often used for simulation. Finite elements, as shown in figure 7.13,

are irregularly shaped and can simulate discrete material types. Stiffness may not cross

element boundaries, and we do not want to assume a continuity that may not exist.

Therefore, interpolation needs to respect boundaries of the finite elements.

The basic algorithm is:

For each point location within the volume {

Find finite element enclosing point location

Get tensor at each Gauss integration point within element,

and its Cartesian location.

for each tensor component {

Run Shepard’s interpolation algorithm on component.

}

}

This algorithm runs in O(G*E) where G is the number of regular grid points and E is the

number of finite elements. We used a simple caching method to improve performance;

we tested whether the current point location is in the same element as previous, before
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doing a brute force search.

7.4.2 Creating an Eigenvector Field

There are two issues for 3D hyperstreamlines. First, one must choose one of

three hyperstreamlines, major, medium or minor. Secondly, Zheng et al. note it is gen-

erally impossible to sort the eigenvalues in a consistent and continuous fashion and hence

the hyperstreamlines, while continuous, may exhibit sudden changes in directions [84].

We propose that the significant eigenvector for a point in the volume of solid

mechanics data depends on the type of stress at the point, and should be chosen relative

to maximum shear. We can use the Lode angle θ to ascertain the anisotropic stress type.

This is calculated directly from the tensor, and the angle θ ranges from −30◦ (triaxial

compression) to +30◦ (triaxial tension), with 0◦ indicating pure shear. This is shown in

figure 7.2. If the eigenvalues are sorted in ascending order (but not by absolute value),

it is very easy to select the eigenvector of interest.

Triaxial Compression Pure Shear

(a) (b)

Figure 7.19: Reynolds glyphs, and the maximum shear directions for each stress mode,
and the eigenvector selected based on Lode angle.
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The algorithm has four simple cases:

• (θ ≤ −10)

Triaxial compression, sorted eigenvalues (-2,+1,+1)

Use first eigenvector, associated with smallest eigenvalue

• (θ > −10 && θ ≤ +10)

Pure shear, sorted eigenvalues (-1, 0, +1)

Use second eigenvector, associated with middle eigenvalue

• (θ > +10)

Triaxial tension, sorted eigenvalues (-1,-1,2)

Use third eigenvector, associated with largest eigenvalue

• Isotropic stress (three equal eigenvalues)

All possible sets of three orthogonal vectors are eigenvectors of the tensor. None is

significant. Possible approaches include halting the hyperstreamline, or continue

it on its previous trajectory with a shape or color change indicating isotropy.

The reason these eigenvectors are of interest is that shear occurs in a consistent direction

relative to the eigenvector associated with the selected eigenvalue. Pure shear occurs in

a plane orthogonal to the selected eigenvector. Shear associated with triaxial tension

or triaxial compression occurs 45◦ off from the selected eigenvector. Figure 7.19 shows
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Reynolds Tensor Glyphs Eigenvector Arrow Glyphs

(a) (b)

Figure 7.20: Drucker-Prager Stiffness Eigenmode field, colored by Lode angle.

Reynolds glyphs with maximum shear drawn in black. Eigenvectors selected by the

Lode angle criterion are shown. Figure 7.20 shows an example of such an eigenvector

field using eigenmode from Drucker-Prager stiffness.

7.4.3 Future Work

The name of the proposed visualization is “Necklaces”. The “string” of the

necklace is a hyperstreamline, and the “beads” on the necklace are glyphs that show

stress type and maximum shear orientation, when viewed from any direction (see figure

7.21). Spherical tension and compression will be represented as spheres (no shear), pure

shear as planes with lines indicating the directions of maximum shear. Triaxial tension

and compression will have cones oriented along the eigenvector associated with the

largest absolute value. The surface of the cone will be along the direction of maximum
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shear (45◦ off from eigenvector with the largest absolute eigenvalue). Using parameters,

it will be possible to change continuously between the three shapes. Filtering can be

used to find the stress types of interest.

Figure 7.21: Glyph and tensor line “necklace”.

There are two advantages in this approach:

1. The “beads” along the necklace reduce the difficulty of following tensor lines’

orientation. For example, perspective viewing will change the size of the beads as

they recede from the user’s viewpoint.

2. In regions where stresses have similar orientation, a pattern will emerge along

the orientation of maximum shear. The pattern is due to the effects of reifica-

tion (Gestalt psychology), where an object is perceived as having more spatial

information than is present in the original stimulus.
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This technique will be both visually appealing and useful. It will show one of the

principal stresses, direction of maximum shear, and stress type. Scalar color mapping

can show one additional attribute (such as magnitude of maximum shear or isotropy)

and be used for filtering.
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Chapter 8

Documentation of VEES Software

8.1 Introduction

This section of the thesis provides documentation of the software, VEES[59](Visualizer

for the Earthquake Engineering System), developed to support the research. It includes

a user guide and architecture documentation.

We planned to address visualization of finite element solid mechanics data by

providing a general application to allow exploration of a simulation domain. Addition-

ally, we planned to provide a means for the user to focus on a specific element within

a domain and new techniques to show the critical details at the location. The hope is

that we will come to understand what is important to observe at both levels and so help

future users to more easily find the “good and the bad stuff”.

The main theme, for usability, is Shneiderman’s well known three level ap-

proach from information visualization: overview, zoom and filter, and details-on-demand
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Figure 8.1: VEES visualization environment.

[71].

VEES plugs into the object-oriented OpenSees[62] finite element simulator.

OpenSees contains natural hierarchies of Finite Element Types such as volume elements

(Bricks), beams, and trusses and Materials representing soil, concrete, steel, etc. The

simulator immediately provides all geometry as well as associated scalar and tensor

data. The theme for the VEES architecture is the Strategy design pattern[21] (using

an interchangeable family of algorithms, for visualization).

118



8.2 User Guide

8.2.1 Linux Setup and Getting Started

It is necessary to have GLUT and GLUI 2.2-2.2 libraries installed in addition

to the modified version of OpenSees and its required libraries.

OpenSees can be run as a command line or by using tcl scripts. Modify your

own tcl scripts by adding the command, vees The vees command does not get loaded

into OpenSees until after the model is declared, e.g.

model BasicBuilder -ndm 3 -ndf 3

Calling vees should then give you the graphical user interface, but to see your

mesh, call vees after creating your nodes and elements. Note: when vees closes it will

also close OpenSees.exe (a bug!)

Execute OpenSees to start. When your script reaches the vees command it

will open a window and 2 floating menus.

The last section of this chapter contains an example script.

8.2.2 Using VEES

In any of the vees display windows, you can interact by placing the mouse in

the display window and using the following keyboard commands:

• [x] rotate about x axis

• [y] rotate about y axis

• [z] rotate about z axis
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• [+] zoom in

• [-] zoom out

• [r] reset to original orientation

Clicking an eight node brick will show the selected element in the upper right

hand Element window.

Clicking an integration point on the element window will show details in the

Integration Point window.

8.2.3 Main Window

In the rendering control window you can choose from a drop down menu of

drawing methods.

Figure 8.2: VEES render mode controls.

Select one of the draw functions from the drop down menu. You can select

from several coloring schemes at the bottom of the main window. Each is scaled into

into a 0 to 1 range, where 0 is blue, 0.5 is green, 1 is red.
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Element Type assigns each element type a unique random color.

Displacement is the Euclidean length of the displacement vector, i.e.
√

∑

(v[i] ∗ v[i])

from each degree of freedom i up to the number of dimensions of the node (2 or 3).

Gauss Points are compatible with stress color functions only.

Stiffness is compatible with stiffness color functions only.

8.2.4 Filtering

There are two types of filters to explore the data:

• By value: you can limit the upper and lower value using the Max Color and Min

Color spinners, and also invert the range (show everything outside the selected

range)

• By element type: check the box for the element type you would like to hide.

8.2.5 Color Map Range Adjustment

At the bottom left, there is a widget set for color maps. You can select the

color map from the drop down list. The range for the color map is set to the (absolute)

maximum for the current time step. If the values for the time step are all very small

(absolute value between 0 and 1.0) the the color map range maximum is set to 1.0.

You can adjust the color map range by clicking on the text area, using the

backspace key to remove old digits and then typing in new ones. Sometimes it sticks a

little, just click another part of the interface and click back to make it work.
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Figure 8.3: Select coloring scheme, adjust range and select linear or log scale.

Log scale is useful if the color map range covers several orders of magnitude,

such as for mean stress.

8.2.6 Element Window

There are two ways to select an element to view in the element window.

1. Click on the element in main window. (Note that you can only click surface

elements. If you need an interior element you will have to filter first).

2. Type the element number in the Select Element text box in the Render Controls

widget.

You can then click one of the element’s integration points to view in the Inte-

gration Point Window. The selected point will be highlighted in red.

8.2.7 Integration Point Window

This windows shows Reynolds glyphs for tensor data. There are keyboard

commands to view stress and various aspects of stiffness.

To view the stress tensor, type G.
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Figure 8.4: Element Viewer. Selected integration point highlighted in red.

To view the stiffness tensor, type 7.

There are several view types of the eigentensors of stiffness. The default is the

eigen decomposition of the polar stretch of stiffness.

Type 8 to view the eigentensors on the non-decomposed stiffness.

Type S to change to eigentensors of the symmetric part of stiffness.

Type 9 to switch back to eigentensors of the polar stretch.

The numbers 0-5 display glyphs of the 6 eigentensors for the selected decompo-

sition type. Type 0 to see the eigentensor with the lowest eigenvalue. The eigentensors

are ordered from lowest eigenvalue to highest.
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8.2.8 Capturing Images and Data for Post-Processing

I have added an OpenSees recorder command that records all node data (de-

grees of freedom, etc.) and stress, strain, and stiffness for many elements and materials.

The command is

recorder domain <-file $filename>

Specifying the file name is optional. The default file names will be domain1,

domain2, etc. Be careful, the files can be quite large for the 3D soil materials.

The files can then be reloaded using the widget shown in figure8.2.8.

Figure 8.5: Widget for replaying times steps.

You can load a specific time step by entering the step number in the text area

under the load button and clicking Load. To move to the next time step, click the >

button. Use the < button to load the previous step.

To run through many time steps as a movie, enter the first time step in the

text area below the Load button and the last time step in the text area labeled End

Step. Then click the ≫ button to run forward, or ≪ to run backwards.

I find it useful to load the last time step, set the color map ranges, and then

run through the time steps as a movie.

Save the images click the Save Image checkbox before loading time steps. It
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is also possible to save stiffness, stress, polar rotation, and the eigentensor associated

with the lowest eigenvalue by clicking the checkboxes. The tensors are interpolated

(component by component) to a regular grid.

8.3 Architecture

VEES acts as a plug-in to OpenSees. OpenSees is an object oriented C++

Finite Element simulator with Tcl wrappers. The data types organized in natural

hierarchy of elements such as beams or soil volume elements, as well as material models

for concrete, soil, steel, etc. A subset of the hierarchy is shown in figure 8.3. The

container for these is an object called the Domain. VEES has access to the Domain, its

Figure 8.6: OpenSees Domain class, its component Elements, and their component
materials.

components, and their data, as shown in the UML diagram (figure 8.3.1. It is organized

using several well-known design patterns, and some of the pattern applications are novel.

OpenSees contains multiple data sets we would like to visualize (stress, strain, stiffness,

deformation), and we would like to be able to visualize each data set in multiple ways.
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8.3.1 Model-View-Controller

The model-view-controller is a pattern for user interface design[47]. The idea

is to have separate objects for the application (the Model), its screen presentation (the

View), and the Controller which defines reaction to user input. Its purpose is to facilitate

multiple views of the same data set. We followed this pattern closely. The Model is the

OpenSees Domain, which holds instances of all nodes and Finite Elements, as well as

their data.

Figure 8.7: UML diagram of VEES.

The main window is an instance of GlutWin, which uses the GLUT window-
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ing library and GLUI widget library. It has four subwindows as shown in figure 8.1.

Each subwindow had a VisWin instance which encapsulates a Viewer and a Camera,

and shared access to the Domain. The VisWin acts as a graphic Controller, handling

lighting, centering, projection, picking, rotation, zoom, and requests to filter the data

shown. Its Viewer is responsible for extracting data from the Domain and drawing it.

The simple hierarchy of Viewers is shown in figure 8.3.1. You can see that the View-

ers facilitate overview of all Finite Elements (DomainViewer) to full details at a single

Gauss integration point (GlyphViewer). This is evident in the user interface, as shown

in figure 8.1.

All the Viewers communicate with the GlutWin main window, but the Do-

mainViewer is the major work horse. It encapsulates arrays of DrawElement objects

and color maps, saves data to files, loads time steps and refreshes its view.

8.3.2 Strategy Pattern

The main theme for VEES is the Strategy design pattern[21], using an inter-

changable family of algorithms for visualization. We accomplished this through a single

level hierarchy of class DrawElement as shown in figure 8.3.2. The DomainViewer con-

Figure 8.8: DrawElement class hierarchy.

tains an array of each type of DrawElement, and iterates through the selected array on
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a call to draw. This displays each finite element, as shown in the code snippet below:

ElementIter &theElements = theDomain->getElements();

while (( theElement = theElements->next() ) != NULL) {

drawMethods[theElement->getTag()]->drawElement(

theElement, color[theElement->getTag()],

ranges[currRange],drawStyle );

}

The DrawElement type, color map, and filtering range are all parameterized. The

DrawElement subclasses are self-explanatory except for HideElement, which exemplifies

the Command pattern[21].

8.3.3 Command Pattern

One filtering mechanism provided in VEES is filtering by Finite Element type,

as shown with checkboxes in figure 8.2. We want to be able to iterate through the

Figure 8.9: Substituting a HideElement instance for a DrawWireFrame instance, and
saving a reference to the old DrawWireFrame instance so we can revert back to it later.

elements and draw them, but we need a way to skip over the filtered elements. When

drawing is based on a scalar value, it is simple to check the scalar against the color map

range during iteration. But in the case filtering by Finite Element type, this will not

128



work. We use the Command pattern[21], encapsulating the request to hide the element

as an object. “Undo” means again drawing the object as it was drawn previously.

When an element type is selected for hiding, for each instance of that ele-

ment we substitute a HideElement instance. Since we want to be able to “undo” the

hiding, we need to save the old drawing object. The HideElement interface has a

setLastDrawnAs(DrawElement *) method, and a revert() method that returns the

old DrawElement.

8.3.4 Memento

We extend VEES and OpenSees to provide visualization during and or af-

ter a simulation run. Our lightweight framework leverages existing superclasses within

OpenSees while providing the necessities save time steps and reload in a series or indi-

vidually. We apply the Momento design pattern[21], serializing objects’ state so that it

can be saved in a file and restored, without breaking objects’ encapsulation.

We add two classes to OpenSees, DomainRecorder and File Channel. Domain-

Recorder is a subclass of the OpenSees Recorder. Recorders perform some action on

each commit step in a simulation, usually saving some type of data to a file.

Our DomainRecorder records the current state of the entire simulation domain

(stress, strain, stiffness, deformation). In other words, it serializes all the components

(Elements, Materials) and their state to a file. The DomainRecorder takes advantage

an interface(MovableObject) that all components in the Domain must implement. Mov-

ableObjects must implement two methods
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• sendSelf(int commitTag, Channel &theChannel) which serializes the object’s

state and sends it through a Channel which may represent a file, socket, datebase,

etc.

• recvSelf(int commitTag, Channel &theChannel, FEM ObjectBroker &theBroker)

which reads state from a Channel and reinstantiates the object via a Broker.

The interface was originally designed to assist with parallelization, by serializing objects

to send to other compute nodes. We use it instead to send state to file on each commit

step. The state of the entire simulation Domain is saved to file using the existing

sendSelf methods.

VEES loads Domain state in a similar fashion, using recvSelf. The graphical

user interface facilitates incrementing and decrementing time steps, or running an entire

simulation as a movie, as shown in figure 8.2.8. Each time we load a time step, the

Domain runs recvSelf on all its components. Then we propogate the update to each of

the Viewers. They reread the data from the Domain, and refresh the drawing.

8.4 OpenSees Example

#(jeremic,zhyang)@ucdavis.edu

# tcl example file using Template3Dep material

# Inelastic static analysis -- Triaxial test

#two load stages:

# stage 1: isotropic compression
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# stage 2: triaxial shearing

#-------------------------

# create the modelbuilder

#-------------------------

model BasicBuilder -ndm 3 -ndf 3

set g 9.81

# -------------------

# build the model

# -------------------

node 1 1.0 1.0 0.0

node 2 0.0 1.0 0.0

node 3 0.0 0.0 0.0

node 4 1.0 0.0 0.0

node 5 1.0 1.0 1.0

node 6 0.0 1.0 1.0

node 7 0.0 0.0 1.0

node 8 1.0 0.0 1.0

# triaxial test boundary

fix 1 0 1 1
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fix 2 1 1 1

fix 3 1 0 1

fix 4 0 0 1

# Linear elastic --id-Youngs--poisson--rho

nDMaterial ElasticIsotropic3D 2 70000 0.2 1.8

#Elastic-plastic model

#=================================

## Cam clay model: use force of 5

# yield surface M = 1.2

set ys "-CC 1.2"

# Potential surface M = 1.2

set ps "-CC 1.2"

#Scalar evol. law: void ratio Lamda Kappa

set ES1 "-NLp 0.65 0.19 0.06"

#Tensorial evolution law

set ET1 "-Linear 0.0"

# Number of tensor and scalar

# internal variables, and intial scalar value

set EPS "-NOD 1 -NOS 1 200.0"

#==================================
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nDMaterial Template3Dep 1 2 -YS $ys -PS $ps -EPS $EPS -ELS1 $ES1 -ELT1 $ET1

# tag 8 nodes matID bforce1 bforce2 bforce3 rho

element Brick8N 1 5 6 7 8 1 2 3 4 1 0.0 0.0 -9.81 1.8

#stage 1

#==================

#isotropic load

set p 5.0

set np -5.0

pattern Plain 2 "Linear"

load 1 $np 0 0 -pattern 2

load 3 0 $p 0 -pattern 2

load 4 $np $p 0 -pattern 2

load 5 $np $np $np -pattern 2

load 6 $p $np $np -pattern 2

load 7 $p $p $np -pattern 2

load 8 $np $p $np -pattern 2

#Set up recorder

recorder domain
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# NN1: number of iterations

set lf1 0.01

set NN1 500

system UmfPack

constraints Penalty 1e12 1e12

test NormDispIncr 1.0e-8 30 1

integrator LoadControl $lf1 1 $lf1 $lf1

algorithm Newton

numberer RCM

analysis Static

analyze $NN1

#stage 2

#=========================

#Axial loading

wipeAnalysis

equalDOF 5 6 3 3

equalDOF 5 7 3 3

equalDOF 5 8 3 3

remove recorders

recorder domain
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#set previous load constant

loadConst time 0

# Before shifting to disp. control,

# apply reference load on the top

pattern Plain 3 "Linear"

load 5 0.0 0.0 $np

load 6 0.0 0.0 $np

load 7 0.0 0.0 $np

load 8 0.0 0.0 $np

load 1 $p 0 0

#Set up recorder for axial loading stage

recorder domain

set NN2 1000

set ndz -0.0001

system UmfPack

constraints Penalty 1e12 1e12

test NormDispIncr 1.0e-08 30 1

integrator DisplacementControl 5 3 $ndz 1 $ndz $ndz

algorithm Newton
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numberer RCM

analysis Static

analyze $NN2

#visualize

vees

136



Chapter 9

Conclusion

In this dissertation, we have presented some novel approaches to visualizing

stress, strain and stiffness tensors from solid mechanics. We have had some success in

decomposing fourth-order stiffness tensors to facilitate their visualization, but further

research is needed. Clearly, solutions to visualizing a wider range of material models’

stiffness will depend on the models’ formulation and meaning.

During the course of this research, a clearer picture has emerged of engineers’

needs with regards to visualizing stress tensors. Since materials frequently fail under

tension and in shear, shear planes, stress type and magnitude of stress invariants must

all be part of the solution. We have solved different parts of the puzzle, and proposed

future work that we expect will be a more complete and satisfactory solution.
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