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Technical Appendix for “Decomposition and
Visualization of Fourth-Order Elastic-Plastic Tensors”
These appendix sections provide additional technical details
that could not be included in the proceedings paper, due to
space limitations. In the interest of self-containment, we first
review some tensor basics.

Tensor Notation and Operations
Tensors are linear operators that can be represented as multi-
dimensional arrays of coefficients. For 3-D solids, a fourth-
order tensor is a 3×3×3×3 array, a second-order tensor is a
3×3 array, etc. The order of a tensor is the same as the num-
ber of subscripts needed to write a typical element. Thus, if
E is a fourth-order tensor, a typical element is denoted by
Ei jk`. Scalars, vectors, and matrices represent tensors of or-
ders zero, one, and two, respectively.

Operations using tensors are usually denoted using the
Einstein convention that repeated indices in different tensors
are implicitly summed; e.g., matrix multiplication is denoted
as Ci j = Aik Bk j , rather than the explicit equation,

Ci j = ∑
k

Aik Bk j. (7)

This operation is called a single contraction in tensor termi-
nology, and is often denoted by “·” as an infix symbol.

In elasticity (and many other physical processes) the dou-
ble contraction operator is important. It is denoted by “:”
as an infix symbol, and involves summing over two indices,
e.g.,

Ci j = A : B = Ai jk` Bk` = ∑
k

∑̀Ai jk` Bk` (8)

Double contraction can also be applied to two fourth-order
tensors, yielding a new fourth-order tensor.

Where many operations on first and second order tensors
use single summation, their generalizations to second and
fourth order tensors use double summation. The above ex-
ample of double contraction is thus the generalization of
multiplying a matrix by a vector. Two important cases are
the scalar inner product, Ai j Bi j , and the dyad or outer prod-
uct, Ai j Bk` that results in a fourth-order tensor.

Appendix A: Unrolling Plasticity Tensors to Matrices and
Vectors

Operations on fourth-order 3-D tensors with minor symme-
tries are more conveniently computed and analyzed by a
transformation to 6×6 matrices. Recall that the minor sym-
metries are Ei jk` = E jik` = Ei j`k = E ji`k. Symmetric second-
order tensors are transformed into 6-vectors. As explained
below, under this transformation, the usual linear-algebra
vector and matrix operations correspond to the tensor op-
erations involving double contraction (eq. 8); single con-
traction and dyad formation (“zero” contraction) also cor-

respond to 6-D vector operations. This transformation is in-
formally called unrolling.

Numerical methods for eigen-decomposition and polar
decomposition only exist for matrices (rather than fourth-
order tensors). Therefore it is computationally advantageous
to represent second-order tensors as vectors and linear trans-
formations on second-order tensors as matrices. (The natural
representation of a linear transformation from second-order
tensors to second-order tensors is a fourth-order tensor.)

The straightforward representation of a 3×3 tensor would
be as a 9-vector with one component for each tensor element.
As applied first by Jean Mandel, (“Ondes plastiques dans un
milieu indéfini à trois dimensions,” Journal de Mécanique,
Vol. 1 (1962), pp. 3–30), and later rigorously justified by
others, (see main paper for citations), due to the symmetry
of the 3×3 tensor space of interest, an orthonormal change
of basis can force the last three components of the 9-vector
to be zero. This orthonormal change of basis in 9-D simply
consists of 45◦ 2-D degree rotations on the three pairs of
vector components that correspond to symmetric pairs of off-
diagonal tensor elements.

Similarly, the straightforward representation of a linear
transformation on 3×3 tensors would be a 9×9 matrix, but
if the set of transformations is restricted to those that produce
symmetric results, after applying the orthonormal change of
basis, a 6×6 matrix suffices.

In summary, as long as the physical quantities of inter-
est have the structure of symmetric 3×3 tensors, the corre-
sponding vectors can be 6-D instead of 9-D, and linear trans-
formations of such tensors can be represented with 6×6 ma-
trices. Because the tensors used in the models we visualize
always enjoy the minor symmetries, the transformation into
6-D suffices, and is described here.

The first part of the unrolling involves a mapping from
single indices in the range 1, . . . ,6 into pairs of indices in the
range 1,2,3.

k 1 2 3 4 5 6
µ(k) (1,1) (2,2) (3,3) (1,2) (2,3) (1,3)

(9)

Other orders of the last three pairs are acceptable, but one
order must be used consistently. Note that µ−1 is well de-
fined and maps pairs of indices into single indices. Minor
symmetries dictate values for tensor elements whose index
pairs do not appear in the table.

Let I3 and 03 denote the 3× 3 identity matrix and zero
matrix. With the above notation we define the 6×6 matrix E
that represents the unrolling of the fourth-order tensor Ei jk`:

E =

[I3 03

03
√

2I3

]







Eµ(1),µ(1) · · · Eµ(1),µ(6)
...

...
Eµ(6),µ(1) · · · Eµ(6),µ(6)







[I3 03

03
√

2I3

]

(10)

Similarly, the 6-D column vector s that represents the un-
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rolling of the second-order tensor Si j is given by:

s =

[

I3 03
03

√
2I3

]







Sµ(1)
...

Sµ(6)






(11)

To recover tensors from matrices and vectors, simply use the
inverse of the scaling matrix and the inverse of µ .

Appendix B: Polar Decomposition of Plasticity Matrices

Once we have a tensor in matrix form we can perform po-
lar decomposition. The method described here is designed to
be robust in the presence of a very small or zero eigenvalue.
Experience has shown that another published method per-
forms poorly in these situations. The method we use follows
a recent paper (A. Van Gelder, “Relaxed Jordan Canonical
Form for Computer Animation and Visualization,” submit-
ted for publication July 2008, available from the author), and
is described here for self-containment. For our application,
we assume that the matrix is square, the determinant is non-
negative, and there is at most one eigenvalue that is zero. In
particular, we are not aware of any interpretation of the polar
decomposition in this application when detE < 0, and do not
perform polar decomposition in this case.

The polar decomposition on the n× n square matrix E is
defined as

E = QS (12)

where Q is an orthogonal matrix and S is a symmetric posi-
tive semidefinite matrix. (Conventionally, the term “orthog-
onal” in this context includes the requirement that rows and
columns be unit-length, besides being pairwise orthogonal.)
If the determinant of E is nonnegative, then the determinant
of Q is +1. The main paper cites previous methods in the
literature, which are either more complicated or more re-
stricted than the method we adopt, described below.

It is well known that the decomposition is unique for
detE > 0. If E has one eigenvalue of 0, the decomposition
is still unique with the specification that detQ = +1. (Proofs
of this and other claims in the appendix are available from
the authors in manuscript.) In all cases the S part of the de-
composition is unique.

The steps are summarized in the following equations,
where Q and S are unknown until they appear on the left
side of an equation, and “≡ introduces a definition of an un-
known. A single subscript on a matrix denotes a column of
that matrix.

M = ET E = ST S = S2

M = TJTT where J is diagonal, ascending order
S = T

√
JTT where

√
J is nonnegative

C ≡ QT
B = ET = QST = C

√
J

C j = B j /
√

J j j for j = 2, . . . ,n
C1 = Gram-Schmidt completion of 6-D orthonormal basis
Q = CTT

S = sym
(

Q−1 E
)

Higham recommends the same computation as the last line,
except using QT in place of Q−1, and in theory they are
equal. We obtain slightly more accuracy with Q−1. In the
Gram-Schmidt completion on the next to last line, replace
the column C1 with −C1 if detC and detT have opposite
signs. The Jacobi method is very robust and accurate for the
computation of eigenvalues and eigenvectors on the second
line.

The correctness of the procedure is shown in the cited
paper and follows from well known linear algebra proper-
ties of real symmetric matrices; in particular, M is positive
semidefinite and T can be chosen to be orthogonal, so that
TT = T−1.

As applied in this paper, n = 6 and the 6× 6 matrix be-
ing decomposed is usually the plastic stiffness matrix, which
results from unrolling the plastic stiffness tensor (see Ap-
pendix A). If there is an eigenvalue of zero for S, its eigen-
vector is found in column one of T; in this case, that column
is also an eigenvector for the zero eigenvalue of the stiffness
matrix and is of special interest. In addition, the matrices T
and

√
J, which are by-products of the decomposition proce-

dure, are useful for various simulations.

Appendix C: Isotropic Stiffness Matrix

Many materials exhibit isotropic elasticity properties. For
such materials the stiffness tensor can be expressed in terms
of two parameters, K, the bulk modulus, and G, the shear
modulus. The stiffness matrix (unrolled stiffness tensor, see
Appendix A) for isotropic materials is given by

E =





















K + 4
3 G K − 2

3 G K − 2
3 G 0 0 0

K − 2
3 G K + 4

3 G K − 2
3 G 0 0 0

K − 2
3 G K − 2

3 G K + 4
3 G 0 0 0

0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G





















(13)

The eigen-decomposition for isotropic stiffness plays an im-
portant role in the visualization. One eigenvalue is 3K and
the other five are 2G. The eigenvector for 3K is [1, 1, 1, 0, 0,
0]T . All 6-vectors orthogonal to this vector are eigenvectors
for 2G; they span a 5-D subspace.
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