Membrane: Operating
System Support for
Restartable File Systems

Swaminathan Sundararaman, Sriram Subramamanian, Abhishek
Rajimwale, Andrea C.Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

Michael M. Swift
University of Wisconsin, Madison

Slides by Alex Nelson
UCSC CMPS 229,2010-05-13

File systems crash.

® (And they make a huge clatter.)
® Why they crash:
® |arge code base

® Updated often

Related work
(Other things crash.)

® Driver fault isolation

® Nooks: Memory isolation

® SafeDrive: Inserted assertions
® File system fault isolation

® CuriOS: Microkernel, protection domains

Weight and state

Heavyweight | Lightweight
Stateless Nooks SafeDrive
Stateful CuriOS Membrane

Thursday, May 13, 2010

Membrane:
Lightweight, stateful

® Normal operation:
® | og file system operations
® Track file system objects
® Checkpoint file system state
® On crash:
® Pause operations, to carefully undo

® Roll back, to redo

Goals

® For any file system restarter:

Fault tolerant
Lightweight
Transparent
Generic

Maintain file system consistency

Thursday, May 13, 2010

Goals

® For Membrane;

® |ightweight
® [ransparent
® (Generic

® Maintain file system consistency

Thursday, May 13, 2010

Fault model

® Transient and fail-stop faults targeted

® Race conditions, environmental factors -
recover and restart

® (Assume away other errors)

® Detecting fault revokes file system trust

Thursday, May 13, 2010

Membrane overview

® Make checkpoints
® Detect faults

® Roll back and replay

Crash example

4) Retry (w2)

Crash!
|
/ success / success / success! *
|
open("file") wO: write (4K) w1:write(4K) : w2:write (4K)
b |
FD 3 FD 3 5| FD3 | FD3
File position 0 File position 4K &1 File position 8K , File pogition 2?2
O |
2 |
O|(3 Replay (w1) :4_

\/ Uimwine

2 Rollback

Thursday, May 13, 2010

Fault anticipation:
Checkpointing

® |nconsistent file system state handlers:
® Journals, transactions (ext3)
® Snapshots (WAFL)
® None (ext2)

® Membrane either inherits, or checkpoints
at VFS layer

® Atomically commits batched operations

Fault anticipation:
Tracking state

® Five logs and stacks, for:

File system operations: operation log
Application-visible sessions: session log
Mallocs: malloc table

Locks, per thread: lock stack

Execution state, per thread: unwind stack

op-log (naive)

write(A) to blk O

op-log (with page stealing)

write(A) to blk O

(not needed)

Low-cost op-logging
Page stealing

Page Cache

C

Thursday, May 13, 2010

Fault detection

® Hardware: just simple exceptions
® Software: redefine macros (BUG())

® |ightweight kernel/fs boundary wrappers

Fault recovery

® Steps to recover from a fault:

Halt executing threads

Unwind in-flight threads

Commit prior epoch’s dirty pages
Unmount file system

Remount file system

Replay from last consistent state

Resume execution

Unwinding:
The Skip/Trust Protocol

1 do_sys_open() cleanup
release fd

2 | open_namei() cleanup
release namei data

block_prepare_write() cleanup
sys_open() ’ g | Clear buffer
do_sys_open Zero page
. ys-Op ()_4'I mark not dirty
filp_open()

open_namei()

vfs_create()

ext2_create()
ext2_addlink()
ext2_prepare_write() 1‘|_> fault — membrane

: 3
block_prepare_write() ,
ext2_get_block() — fault —> membrane

Thursday, May 13, 2010

Evaluation

® Platform:

® Linux 2.6.15, single-core 2.2 GHz
® Categories:

® [ransparency

® Performance

® Generality

Evaluation:
Transparency

® |nject a fault - does an application notice?

® Tested base file system;added boundary;
added membrane

® Membrane had perfect performance
® File system lived, usable
® Applications didn’t notice

® OS was always usable, even with fs crashes

Evaluation:
Performance

ext2 ext2H ext3 ext3H{ VFAT VFAT+
Benchmark Membrane Membran Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 2571 56.3 563 18.5 20.2
Rand. read | 163.2 163.5] 163.2 163.2] 163.5 163.6
Rand. write| 20.3 20 .5| 65.5 65.5 18.9 18.9
create 34.1 34.11 33.9 343 324 34.0
delete 20.0 20.1] 18.6 18 .7| 20.8 21.0

ext2 ext2+ extd ext3+ VFAT VFAT+
Benchmark Membran Membrane| Membrane
Sort 1422 142.6 152.1 152.5 146.5 146.8
OpenSSH 285 289 287 29.1 30.1 30.8
PostMark 469 472 4782 484.1 43.1 438

® Micro/macro benchmark overhead:
between 0 and 2%.

Thursday, May 13, 2010

Evaluation:
Performance

Data| Recovery Open | Recovery Log Recovery
(MB)| time (ms)| | Sessions| time (ms) Records| time (ms)
10 12.9 200 114 1K 15.3
20 13.2 400 14.6 10K 16.8
40 16.1 800 22.0 100K 25.2
(a) (b) (c)

® Time to recover a crashed file system:
Sub-linear growth w.r.t. state

Thursday, May 13, 2010

Evaluation:
Generality

File System Added Modified
ext2 4
VFAT 5
ext3 1
JBD 4
Individual File-system Changes

Components No Checkpoint With Checkpoint

Added | Modified | Added | Modified
FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89

Kernel Changes

® Minimal changes to file systems

® Most kernel additions were error checks
or handlers

Thursday, May 13, 2010

Conclusions

® File systems fail.
® Membrane: failures aren’t even hiccups.

® “_Ship file systems sooner, as small bugs
will not cause massive user headaches.’

Thursday, May 13, 2010

Questions!

® How can this apply to networked file
systems?

® Example: How do | recover from a
nearly-completed append!?

® Applicability: Does anything else touch as
much of the kernel as file systems!?

