
Dynamic Integrated Scheduling of Hard Real-Time,
Soft Real-Time and Non-Real-Time Processes†

Scott A. Brandt Scott Banachowski Caixue Lin Timothy Bisson

Computer Science Department
University of California, Santa Cruz�

sbrandt,sbanacho,lcx,tbisson � @cs.ucsc.edu

Abstract

Real-time systems are growing in complexity and real-
time and soft real-time applications are becoming common
in general-purpose computing environments. Thus, there is
a growing need for scheduling solutions that simultaneously
support processes with a variety of different timeliness con-
straints. Toward this goal we have developed the Resource
Allocation/Dispatching (RAD) integrated scheduling model
and the Rate-Based Earliest Deadline (RBED) integrated
multi-class real-time scheduler based on this model. We
present RAD and the RBED scheduler and formally prove
the correctness of the operations that RBED employs. We
then describe our implementation of RBED and present re-
sults demonstrating how RBED simultaneously and seam-
lessly supports hard real-time, soft real-time, and best-effort
processes.

1. Introduction

Modern embedded, special-purpose and general-purpose
computing systems are becoming increasingly complex. At
the same time, the traditional notions of best-effort and
real-time processing have fractured into a spectrum of pro-
cessing classes with different timeliness requirements in-
cluding best-effort, desktop multimedia, soft real-time, firm
real-time, adaptive soft real-time, rate-based, and traditional
hard real-time. Many different schedulers support the im-
portant characteristics of each of these classes. However,
none of them fully integrates the processing of these het-
erogeneous classes into a single scheduler.

Hierarchical systems can support multiple classes of pro-
cesses, but do so through potentially complex hierarchies of
schedulers. Because hierarchies partition the system among

† This research was supported by Intel Corporation, a Department of
Energy High Performance Computer Science Fellowship, and the
USENIX Association

different schedulers, this strategy of integrating multiple
schedulers may limit the ability to trade off merits of in-
dividual processes of different classes, and may compli-
cate slack management. In contrast, a unified, integrated
scheduling approach may make decisions while fully aware
of the state of all processes.

To address this issue, we present a general model of real-
time scheduling called Resource Allocation/Dispatching
(RAD). RAD explicitly separates the management of the
amount of resources allocated to each process from the tim-
ing of the delivery of those resources. This separation al-
lows the resource management to be precisely tailored to
the needs of the individual processes. By allowing these two
aspects of scheduling to be varied dynamically and inde-
pendently, the RAD model fully captures the very different
needs of the different real-time and non-real-time schedul-
ing classes.

As a proof-of-concept, we have developed the Rate-
Based Earliest Deadline (RBED) scheduler. RBED is a
RAD scheduler that provides fully integrated scheduling of
hard real-time, soft real-time, and best-effort processes. It
uses dynamic rate-based resource allocation and dynamic
period adjustments for fine-grained control of both resource
amounts and timing.

2. The RAD CPU Scheduling Model

Traditional non-real-time CPU schedulers serve two
roles in CPU resource management: resource alloca-
tion and dispatching. Resource allocation determines how
much of the resource to give each process, while dispatch-
ing determines when to give the allocated resources to
each process. Historically, the extreme efficiency require-
ments imposed on schedulers demanded unified approaches
that merge these two important aspects of schedul-
ing into a single mechanism. However, the recent rapid
increase in CPU speeds enables the use of slightly more so-
phisticated scheduling mechanisms without significantly
impacting overall system performance.

Although all schedulers implicitly address both resource
allocation and dispatching to some degree, most do not
explicitly separate their management and allow them to
be independently adjusted at run-time. However, differ-
ent classes of applications exhibit very different character-
istics with respect to both resource allocation and deliv-
ery requirements. Dynamically and independently manag-
ing these two quantities thus enables the integrated schedul-
ing of these different classes of processes.

Figure 1 presents a conceptual diagram of the resource
allocation and dispatching requirements of each class of
processes. Each axis represents the relative tightness of the
requirements of the classes of processes, ranging from very
loose to very tight. Hard real-time processes have extremely
tight resource allocation and dispatching requirements. By
contrast, best-effort processes have very loose resource al-
location and dispatching requirements, generally being able
to run as slow and sporadically as necessary without be-
ing thought of as having failed. However, even within best-
effort scheduling there is variation in terms of these require-
ments. Non-interactive CPU-bound processes need greater
amounts of CPU, but within very broad parameters they can
use it in any size increments and at any time. I/O-bound pro-
cesses, especially interactive ones, use relatively little CPU
but need to receive it quickly once they have unblocked in
order to provide good interactive responsiveness.

loose tight

loose

tight

Dispatching Requirements

R
es

o
u
rc

e
A

ll
o
ca

ti
o
n
 R

eq
u
ir

em
en

ts

�����
t�	�
������

����
d

Real-��� �
e

� ���
t

Real-��� �
e

I/O�����
nd

CPU�! �"
nd

#!$&% !"�' (
e)�* * !(
+�,

ion

-/. %
sed 0�$1+
dline

#!+�,
e��+&%
ed

Figure 1: Resource allocation and dispatching re-
quirements for different types of processes

Between hard real-time and best-effort lies a broad class
of applications and systems referred to as soft real-time
(SRT). This includes a variety of different systems with
varying properties, all of which share the common prop-
erty that resource allocation and/or dispatching require-
ments are looser relative to hard real-time. Figure 1 divides
these into three broad sub-categories—Missed Deadline
Soft Real-Time (MDSRT), Resource Adaptive Soft Real-

Time (RASRT), and Rate-Based (RB)—depending upon
which constraints are relaxed. MDSRT is real-time process-
ing in which the time constraint is softened such that real-
time processes may miss their deadlines in varying percent-
ages or by varying degrees when all deadlines cannot be
met [12, 17, 18]. By contrast, RASRT is real-time process-
ing in which the resource allocation constraint is softened
while attempting to minimize the number and amount by
which deadlines are missed [4, 5, 12, 25]. In Rate-Based
processing both resource allocation and dispatching can
vary, but not completely independently; if more resources
are provided a longer time may elapse before resources are
again allocated and if less resources are allocated a shorter
time may elapse before resources are again allocated [8, 11].

As this discussion demonstrates, the RAD model cap-
tures the important differences between these different
classes of processes. The key to developing a fully inte-
grated multi-class real-time RAD scheduler thus depends
upon the development of mechanisms that will support dif-
ferent and varying degrees of requirements on both the
resource allocation and dispatching. The Rate-Based Ear-
liest Deadline (RBED) scheduler was developed to do
exactly this.

3. The Rate-Based Earliest Deadline (RBED)
Scheduler

RBED is a RAD scheduler for hard real-time, soft real-
time, and best-effort processes. RBED resource allocation is
accomplished via dynamic process rate adjustment. RBED
dispatching is accomplished via dynamic application period
adjustment. Based on the specific processing requirements
of each process and the current system state, RBED assigns
a target rate of progress and period to each process in the
system. Both are enforced at runtime by a modified EDF
scheduler that dispatches processes in EDF order but inter-
rupts them via a programmable timer when they have ex-
hausted their alloted CPU for the current period.

RBED allocates resources to processes as a percentage
of the CPU such that the total allocated to all processes is
less than or equal to 100%. Hard real-time processes have
a period p and worst-case execution time e and are either
granted their desired rate e 2 p or are rejected if insufficient
resources are available. Soft real-time processes are given
their desired rate e 2 p if possible, or are given less, possi-
bly based upon a QoS specification if one is available. Like
hard real-time processes, rate-based processes are given the
rate that they request if possible, or are rejected. The rate
of each best-effort process is a calculated share of the rate
that remains after the rates of the other processes in the sys-
tem have been determined. A reservation mechanism can
guarantee that a minimum or maximum allocation is avail-
able to a particular class of processes, ensuring, for exam-

2

ple, that there are always some resources available to the
best-effort processes.

RBED assigns periods in cases where application do
not already have them. Hard and soft real-time tasks have
pre-specified periods. Periods for rate-based tasks are de-
termined based on the processing requirements of the par-
ticular task. At deadlines, a process’ desired and actual re-
source usage are equal, and so the difference between the
desired and actual resource usage at non-deadline times are
bounded by the choice of period. Thus the necessary pe-
riod for rate-based tasks can be determined directly by the
amount they are allowed to stray from their target rate. For
example, in an audio player application this is a function
of the data sampling rate and the size of the audio device’s
memory buffer. For best-effort tasks, a semi-arbitrary pe-
riod is assigned to ensure a high degree of responsiveness,
when needed.

Thus, by allocating the resources appropriately, choos-
ing appropriate deadlines, and using a programmable timer,
RBED presents to EDF exactly what it wants and guar-
antees that all deadlines are always met, that all rate con-
straints are met, and that all processes receive the correct
amount of CPU. However, unlike processes in traditional
hard real-time systems, the rates of soft real-time and best-
effort processes may change as processes enter and leave
the system, and the periods of soft real-time processes may
change as they adjust to the available resources. The next
section provides proofs that we can maintaining the correct-
ness of EDF under these conditions.

4. RBED Theoretical Background

Because RBED uses earliest deadline first (EDF) to
schedule periodic tasks1, its theory is based on well-known
real-time scheduling principles. However, the standard def-
inition of EDF and proofs of its correctness and optimal-
ity usually assume that the worst-case execution time and
the period of a task is fixed during its lifetime, while RBED
dynamically adjusts both of these properties. In this section
we prove that EDF functions correctly with the dynamically
changing rates and periods of RBED.

When either rate or period change (or both), the task un-
dergoes a mode change. Previous works describe the con-
straints under which either fixed-priority [22, 24] or
proportional share [23, 2] scheduling algorithms al-
low mode changes. In this section, we determine the
impact on schedulability when a task changes mode at ar-
bitrary times under EDF, and describe the conditions un-
der which EDF still guarantees deadlines after a mode
change. Understanding these constraints allows us to cre-

1 The terms “task” and “process” are used interchangeably throughout
this paper.

ate flexible schedules for the dynamic workloads presented
to the RBED scheduler.

We introduce a slightly different task model than sup-
plied in the Liu and Layland proof [15]. In the original proof
a task consists of a sequence of periodically released jobs
whose deadlines equal their release times plus the task pe-
riod. The RBED task model is the same, except that each
job in a task may have a different period. We first show that
under this model an EDF schedule remains feasible as long
as the utilization is constant, and then we relax even this
requirement. We use the following notation: a task Ti con-
sists of sequential jobs Ji 3 k, where each job has a release
time ri 3 k, period pi 3 k, deadline di 3 k, and worst-case execution
time ei 3 k. For any k, utilization2 ui 4 ei 3 k 2 pi 3 k, ri 3 k 4 di 3 k 5 1,
and di 3 k 4 ri 3 k 6 pi 3 k. The total utilization of the system is
U 4 ∑i 7 T ui, where T is the set of all tasks. In some cases,
subscripts are dropped if the meaning is obvious.

Theorem 1 The earliest deadline first (EDF) algorithm
will determine a feasible schedule if U 8 1.

Our modified task model does not invalidate this theory;
for reference a similar proof using the new task model is
provided in Appendix A. The benefit of the new model is
that it supports arbitrary period changes at job deadlines.
The restriction that period changes occur only at deadline
boundaries is relaxed below.

When a job completes and a new job is released with a
different period, it is equivalent to the task leaving at the
same instance that a new task of the same utilization en-
ters the system. In this sense, it is safe to consider the uti-
lization of a departing task as part of the unallocated CPU
(1 9 U) when its last deadline is reached.

Corollary 1.1 Given a feasible EDF schedule, at any time
a task with utilization 8;: 1 9 U < may enter the system and
the schedule remains feasible.

The proof is implicit in the proof for Theorem 1, because
it holds for tasks of arbitrary starting times.

4.1. Increasing Utilization or Period

Theorem 2 Given a feasible EDF schedule, at any time a
task Ti may increase its utilization by an amount up to 1 9 U
without causing any task to miss deadlines in the resulting
EDF schedule.

Figure 2 shows the effect of increasing the utilization of
an already released job. At time t, the instantaneous uti-
lization of the task increases from u to u = , but over the
life of the job, the job effectively consumes a utilization
ue f f ective 4 :>: t 9 r <@? ui 6 : d 9 t <@? u = < 2 : d 9 r < .
2 Utilization is synonymous with rate. We are using the term utilization

and the symbol u in the proofs instead of rate and r, because the sym-
bol traditionally refers to release time.

3

time

release

deadline

effective rate

CPU

d

increased or decreased rate

r t (time of mode change)

uoriginal rate

u’

d

r

Figure 2: Increasing or decreasing the rate of an
already released job

The proof uses Corollary 1.1; the schedule resulting from
increasing the utilization of a task is equivalent to a sched-
ule in which another task having the same deadlines en-
ters the system. Assume that at time t task Ti, which al-
ready released a job at time ri, wishes to increase its utiliza-
tion to u =i 4 ui 6 ∆, where ∆ 8 1 9 U . To meet its deadline
with the new utilization, it requires e =i 4 ue f f ective : di 9 ri < 4
ui : t 9 ri < 6 : ui 6 ∆ <A: di 9 t < CPU in the interval : ri B di C . At
this time, introduce task T =i with period p =i 4 di 9 t and uti-
lization ∆. By Corollary 1.1, the schedule remains feasible.
During the interval : t B di C , the CPU assigned to both Ti and
T =i is used for Ti, and over the interval : ri B di C the total CPU
allocated to Ti equals ui : di 9 ri < 6 ∆ : di 9 t < 4 e =i. For sub-
sequent periods, the tasks Ti and T =i may be merged into a
single task of utilization ui 6 ∆.

Theorem 3 Given a feasible EDF schedule, at any time a
task Ti may increase its period without causing any task to
miss deadlines in the resulting EDF schedule.

The task model described in Theorem 1 allows subse-
quent jobs to have different periods. We now consider in-
creasing the period of an already released job Ji 3 k, effec-
tively extending its current deadline from di 3 k to d =i 3 k. If, in
the unchanged schedule, Ji 3 k is followed by a job released at
di 3 k with period pi 3 k D 1 4 d =i 3 k 9 di 3 k, the schedule is feasible.
In this schedule, the total CPU consumed by both jobs over
the interval : ri 3 k B d =i 3 k C is the same as if the original period
of Ji 3 k was the new period. Instead of releasing the jobs se-
quentially, we wish to simply extend the current job’s dead-
line, and ensure that changing it on-the-fly does not cause
another task to miss a deadline due to changes in dispatch
order.

A simple “interval swapping” argument shows that EDF
does not miss any deadlines in the new resulting schedule:

all jobs with deadlines before di 3 k will execute in the same
intervals before and after the period change. Any jobs with
deadlines at or after di 3 k, but before d =i 3 k, will be dispatched
in earlier intervals under the new schedule, so are not at risk
of missing deadlines. And because EDF is work conserv-
ing, any jobs with deadlines after di 3 k that receive CPU in
the interval : t B d =i 3 k C under the previous schedule receive the
same amount of CPU in this interval of the new schedule.

4.2. Decreasing Utilization or Period

As long as the requested utilization does not exceed the
CPU bandwidth, increasing the utilization or period of an
already released job is unconstrained. This is not the case
when decreasing utilization or period. For example, in an
EDF schedule it is possible for a task to meet its deadline
without any laxity. Clearly, this task cannot meet an earlier
deadline, as it just barely makes its existing deadline. This
section describes the conditions that allow decreasing the
utilization or period of an already-released job. These con-
ditions depend only on the state of the task, so that it may
change mode without needing to determine the state of any
other tasks.

The lag of a job is the difference between its ideal and
actual service time. The ideal service time is the amount of
CPU the job receives assuming ideal (fluid) scheduling, and
equals u : t 9 r < . At t, if the job actually consumes x CPU
since time r, lag : t B x < 4 u : t 9 r <E9 x. A negative lag means
a task is proceeding ahead of its ideal service time. The lag
concept is often used when characterizing algorithms that
approximate fair sharing—because proportional share algo-
rithms bound lag, it is useful for proving mode change con-
straints.

If a task meets its deadline, then at its deadline it has
zero lag (lag : r 6 p B e < 4 e 2 p :�: r 6 p <F9 r <G9 e 4 0). Depend-
ing on the schedule, there may be several times during a
job’s lifetime that lag is zero. If the task leaves the system
when its lag is zero, the utilization may be immediately re-
claimed for use by any task.

Lemma 1 Given a feasible EDF schedule, if a task with
zero lag leaves, its utilization may be used by a new task,
and the resulting EDF schedule remains feasible.

At a task’s deadline, this is already known to be true.
Here we sketch the proof when a task is not at its dead-
line. If job Ji 3 n has zero lag at time t, its current service time
is xi 3 n 4 ui : t 9 di 3 n 5 1 < . At this time the current job leaves
(and hence has no deadline to miss) and the task releases a
new job of period pi 3 n D 1. At the deadline of a later job Ji 3m,
the total service time requested by the task is (with φi equal
to the time of the first release):

ui H di I 1 J φi K!L ui H di I 2 J di I 1 K�LNMOMOM	L ui H t J di I n P 1 KL ui H di I n Q 1 J t K�LNMOMOM	L ui H di I m J di Im P 1 KSR ui H di I m J φi K
The remainder of the proof follows that of Theorem 1

supplied in Appendix A. The total service demand of the

4

task remains the same as in Equation (A.1), so a missed
deadline requires U T 1, a contradiction.

A task may reduce its utilization at any time, without
affecting the feasibility of the existing task set, because
the overall service time is reduced. However, because the
scheduler assumes that jobs will complete their periods, it
is not apparent that the utilization freed by this task is avail-
able to other tasks until its existing period completes. How-
ever, if the utilization of a task is decreased within a con-
straint, we see that EDF can guarantee the freed utilization
immediately to other tasks.

Theorem 4 Given a feasible EDF schedule, if at time t
task Ti decreases its utilization to u =i 4 ui 9 ∆ such that
∆ 8 xi 2 : t 9 ri < , the freed utilization ∆ is available to other
tasks and the schedule remains feasible.

Figure 2 shows the effect of decreasing the utilization
of an already released job. At time t, the instantaneous uti-
lization of the task decreases from u to u = , but over the
life of the job, the job effectively consumes a utilization
ue f f ective 4 :�: t 9 r <@? ui 6 : d 9 t <@? u =U< 2 : d 9 r < .

The schedule described in Theorem 4 is equivalent to the
following hypothetical EDF schedule, which is feasible: At
time ri, imagine that instead of Ti releasing a job with ui,
two tasks release jobs: Ta’s job has deadline di and utiliza-
tion ua and Tb’s job has deadline t and utilization ub, where
ua 6 ub 4 ui. At time t Tb may leave the system and ub is
available for use by other tasks. The service time received
by Tb at t is ub : t 9 ri < .

In the actual schedule, at time t we wish to make ∆ of
task T =i s utilization available to another task. This is equiv-
alent to letting a portion of the task leave the system, as
though it met a hypothetical deadline. The service time of
Ti at t must exceed the service time of the hypothetical task
leaving the system, i.e. xi V ub : t 9 ri < . Letting ub 4 ∆, if
∆ 8 xi 2 : t 9 ri < , the resulting schedule is feasible if another
task uses ∆ at t.

Theorem 5 Given a feasible EDF schedule, if a currently
released job Ji 3 n has negative lag at time t (the task is over-
allocated), it may shorten its current deadline to at most
xi 2 ui, and the resulting EDF schedule remains feasible.

Lowering the period is possible if the task is currently
over-allocated. According to Lemma 1, if the lag equals
zero, then it is safe to change the deadline. Note that if
the task is over-allocated, it will reach zero lag by idling
for 9 lag : t B xi < 2 ui units of time. Thus, the deadline of a job
may be reduced to any value of d =i such that its current ser-
vice time does not exceed its utilization, i.e. xi 2 d =i 8 ui, so
d =i V xi 2 ui.

When the deadline is decreased to d =i , tasks with dead-
lines before d =i are unaffected. If in the original schedule
no CPU is allocated to Ji 3 n between t and d =i , then the new

schedule is feasible, because it is exactly the same schedule
produced if a period change occurs at d =i , when it is permis-
sible by Lemma 1. Thus, tasks at risk of missing deadlines
are those with deadlines after d =i but before di, as they would
preempt Ti in the original schedule. Note that if any of these
jobs were released before ri 3 n, then Ji 3 n would not have re-
ceived CPU before them, and so it would not have nega-
tive lag; therefore any jobs at risk were released in the inter-
val : ri 3 n B di C . The proof proceeds as follows: if any of these
“at risk” tasks miss a deadline after d =i , the utilization ex-
ceeds 1, which is a contradiction. The details are provided
in Appendix B.

In some cases it may be feasible to lower the deadline
of a task even if it has positive lag. However this is not al-
ways so, for example when the task has no laxity. To deter-
mine if a task with positive lag may safely reduce its period
requires knowledge of the state of other tasks in the system,
because it must be determined if tasks with pending dead-
lines have enough slack to potentially change dispatch or-
der; it is therefore simpler to use the loose constraints of
Theorem 5.

4.3. Superposition of Mode Changes

The above section examines the effect of a single mode
change of either utilization or period, while the other pa-
rameter is held constant. It is possible for a task to instan-
taneously change both the utilization and period, and the
bounds are determined by a piecewise combination of the
above rules. When determining the bounds of feasibility, it
is useful to apply the change to the less constrained param-
eter first.

Increasing Utilization and Period Increasing either period
or utilization is unbounded by the task state, so it is always
feasible to do both operations as long as U 8 1.

Decreasing Utilization, Increasing Period Increasing the
period is unbounded, but the amount that utilization may de-
crease is a function of service time (Theorem 4). Changing
the period has no effect on service time, so the bound that
utilization may be lowered depends only on the received
service time, and remains the same.

Increasing Utilization, Decreasing Period The amount that
a period may be lowered depends on the new effective uti-
lization of the utilization change. Figure 2 shows that af-
ter the job increases its utilization, although the task be-
gins processing at its new utilization, for the currently re-
leased job the effective utilization is an intermediate value
between the old and new period. The effective period of the
job is ue f f ective 4 u : t 9 r < 6 u =!: d 9 t < 2 : d 9 r < , and the bound
on lowering the period of this job is x 2 ue f f ective .

Decreasing Utilization and Period If a task is under-
allocated it cannot lower its deadline. Nevertheless, af-

5

ter lowering utilization it is possible that under the
new ue f f ective the lag is no longer positive, and the pe-
riod may now be lowered to x 2 ue f f ective .

Thus by following the constraints imposed by the above
theorems, it is possible to vary the rate and period of pro-
cesses as required by RBED while still maintaining the cor-
rectness of EDF. This enables the implementation of the
RBED scheduler, as discussed in the following section.

5. RBED Implementation

After simulating all of the RBED operations, we im-
plemented a proof-of-concept version of RBED in Linux
2.4.20 on an Intel Pentium 4 platform. RBED supports all
of the processing classes shown in Figure 1 but due to space
limitations this discussion is limited to our support of hard
real-time, missed deadline soft real-time, and best-effort
processes. The changes to the Linux kernel include less
than 550 lines of modified or added code. We added several
attributes to the process state structures for RBED book-
keeping: process type, period, worst case execution time
(WCET), weight, and deadline. We also added two system
calls to allow processes to interface with the RBED sched-
uler: set rbed scheduler(deadline type, period, WCET)
and rbed deadline met(void).

All processes default to the best-effort scheduling class.
set rbed schedule() turns a process into a real-time pro-
cess. The arguments specify the period, worst-case execu-
tion time (WCET), and whether the deadlines are hard or
soft. The target resource rate (utarget) of a process is de-
fined as WCET

period . A hard real-time process is guaranteed to
receive an actual resource rate (uactual) equal to utarget if
enough CPU is available, otherwise the process is not ad-
mitted as a real-time process. A soft real-time process re-
ceives a uactual equal to its utarget or less, depending on the
available resources. Set rbed schedule() returns the amount
of utilization available to the process—if a soft real-time
task receives less than it requested it may continue, adapt to
the available resources, or abort.

Real-time processes call rbed deadline met() when they
finish a periodic computation. It returns true or false de-
pending upon whether or not the process met its deadline.
This allows processes to synchronize their periods using
system clocks and to determine if a deadline is missed with-
out having to compute the time. If this function is called be-
fore a deadline, the process suspends until its next release
time. If a soft-real time computation exceeds its WCET, it
will call this function after its deadline, in which case it re-
turns false, and the application may deal with the missed
deadline appropriately.

There are two main components of the RBED scheduler:
a resource allocator [14], and an EDF-based dispatcher. The
resource allocator sets the periods and WCET of all tasks so

do resource allocation(process p) W
switch(p X type) W

case Hard real-time:
p X uactual R p X utarget ;
break;

case Soft real-time:
p X uactual R min H p X utarget Y!H 1 J β J UHRT K p Z utarget

USRT
K ;

break;
case Best-effort:

p X uactual R max H β Y 1 J UHRT J USRT K p Z weight
WBE

;[\[
Figure 3: Resource allocation pseudo-code. β is
the minimum resource rate reserved for best-effort
processes.

that the EDF scheduler is never overloaded. The resource al-
location component is triggered whenever a process enters
or leaves the system or a best-effort process blocks or un-
blocks. The algorithm sets uactual for each task according
to its requirements. Hard real-time tasks receive their re-
quested utilization, soft real-time task receive the leftover
CPU, minus the portion of CPU (β) reserved for best-effort
processes. Best-effort processes receive utilization in pro-
portion to their weights, described in more detail in Sec-
tion 5.1. The pseudo-code in Figure 3 describes the alloca-
tion policies. In this code, UX 4 ∑p 7 X p] uactual , where X is
the set of all tasks of type X , and WBE 4 ∑p 7 BE p] weight.
Note that in this calculation we count only runnable best-
effort processes – blocked best-effort processes have an ef-
fective weight of zero.

To ensure a feasible schedule, a process must not overrun
its worst-case execution time. RBED uses a one-shot timer
to interrupt a task when it consumes its WCET. If a task
reaches its WCET, the one-shot timer interrupt handler will
preempt the process and advance its absolute deadline to
the end of its subsequent period. RBED uses the Advanced
Programmable Interrupt Controller, which is capable of bet-
ter than microsecond precision with little overhead, for its
one-shot timer. This allows the kernel to continue to use the
regular programmable interrupt timer for system time ser-
vices.

5.1. Scheduling Best-effort Processes

Best-effort schedulers attempt to provide fair allocation
of the CPU over the long term. In addition, to improve the
responsiveness of I/O-bound applications, they give a short-
term “boost” to processes immediately after they block. One
goal of the RBED scheduler is to preserve this behavior for
best-effort processes.

Unlike real-time processes, best-effort processes lack
the time constraints required by deadline-based schedul-
ing algorithms. RBED therefore assigns dynamic pseudo-
periods to best-effort processes. The period is equal to

6

rbed schedule() W
1. If RT process enters or leaves and system is overloaded

then for all p in RT, do resource allocation(p).
2. Use EDF to dispatch a process.
3. If the selected process p is in BE

/*do lazy allocation*/
do resource allocation(p).

4. Clear one-shot timer for the previous process and
reset one-shot timer for the selected process.

5. Context switch if needed.
[

Figure 4: Pseudo-code for rbed schedule()

NBE ? quantum, where NBE is the number of runnable best-
effort processes and the quantum reflects the scheduling
quantum of a time-share system. RBED, like the version
of Linux it was implemented in, assigns a default quantum
of 60 ms.

Every best-effort process has a weight, which is the rate
it consumes CPU relative to other runnable best-effort pro-
cesses. Figure 3 shows how RBED maps weight into utiliza-
tion. Given uactual , the WCET is NBE ? quantum ? uactual .

A task’s weight fluctuates depending on its state. When-
ever a best-effort process consumes its WCET without
blocking, its weight is set to 0. A process that blocks be-
fore using its entire WCET retains its weight. When no
runnable processes have a nonzero weight, all runnable pro-
cess’s weights are set to one, and all blocked processes re-
ceive weight 4 weight 2 2 6 6 (which is bounded to a maxi-
mum of 12). The static value 6 provides a boost similar to
that of Linux.

In order to avoid frequent resource allocation recompu-
tation any time a process enters or leaves the system or
a best-effort process blocks or reenters the ready queue,
RBED lazily applies the resource allocation algorithm to
each best-effort task when it is selected for dispatch. Fig-
ure 4 shows the pseudo-code for the scheduler. Parameters
of already released jobs are set within the constraints de-
fined in Section 4.

When real-time tasks complete the processing for a pe-
riod, the next job is not released until the period expires.
In our RBED prototype, best-effort tasks are treated dif-
ferently: instead of suspending a best-effort job when it
consumes its WCET, the next job is immediately released
(with the deadline set to the end of its next pseudo-period).
This allows best-effort processes to consume all of the dy-
namic slack inserted into the schedule by real-time pro-
cesses. This approach is similar to the those used in other
systems, such as in Portable RK [19], which runs depleted
tasks at a low background priority. However RBED does not
need to maintain a background scheduling algorithm; the
resource allocator only needs to release the task’s next job
early, using the later deadline to effect a background priority
with no change to the dispatcher or any other tasks’ param-
eters. This simple technique distributes the slack among the

best-effort tasks according to their relative weights. How-
ever, it does not allow other classes of processes (notably
soft real-time) to take advantage of dynamic slack. In the
future we plan to examine techniques for making regularly
available dynamic slack available to soft real-time processes
as well.

6. Performance Measurements

To characterize the performance of RBED, we com-
pare it to the Linux scheduler and to a hierarchical
EDF/best-effort scheduler we developed called EDF-
Linux. Both Linux and EDF-Linux use the 2.4.20 kernel.
EDF-Linux maintains two ready queues, one for peri-
odic real-time tasks, scheduled by EDF, and another for
best-effort tasks, scheduled by the default Linux sched-
uler whenever the real-time queue is empty. All experi-
ments were performed on a standard PC Desktop equipped
with a 1 GHz Pentium III processor, 512MB RAM, and a
40GB hard drive. In developing our prototype we have run
the system over long periods of time. Our general impres-
sion is that the scheduler works well. Best-effort tasks ex-
hibit “normal” behavior (with default scheduling quanta of
60 ms, the same as the Linux scheduler) and are never com-
pletely starved, real-time tasks meet their deadlines, and
soft real-time tasks meet their deadlines or run at lower per-
formance levels depending upon the amount of resources
available. Below we present a series of snapshots that il-
lustrate how RBED performs in practice. For simplicity
we have drawn the graphs relative to an origin start-
ing at (0,0) even though the snapshots were taken from the
middle of longer executions.

Real-time workloads for these tests were generated by
a tool we developed to easily generate periodic workloads
with different utilization and timing behavior. Given a spec-
ification of a desired period and rate (where rate is WCET

period),
the tool generates periodic hard real-time or soft real-time
processes with constant or variable (with a normal distri-
bution) execution times. We arbitrarily reserve a minimum
of 5% of the CPU for best-effort processes, enough to pro-
vide a functional interactive system for running command
shells during experiments.

Figures 5 shows the performance of the Linux and
RBED schedulers when running two best-effort processes,
one CPU-bound and one I/O-bound. The CPU-bound pro-
cess performs a floating point calculation in a tight
loop, while the I/O-bound process repeatedly com-
putes for 300 ms then sleeps for 1200 ms. The RBED re-
sults are nearly identical to the Linux results. Figure 6
shows closeup views of the behavior when the I/O-bound
process reenters the ready queue after blocking (a con-
stant offset was added to the y-axis of the I/O process’s data
set to view the two lines in the same axes). Again the re-

7

sults are nearly identical. When an I/O-bound process
blocks, Linux increases its scheduling quantum and pri-
ority. When it awakens, the I/O-bound process receives a
long quantum of about 110 ms. After this quantum, the
I/O-bound and CPU-bound process share the CPU, each us-
ing 60 ms quanta. When both quanta expire, they are both
replenished to 60 ms. When two processes have equal prior-
ity, Linux prefers to avoid a context switch, so the same pro-
cess consumes another quantum for a total of 120 ms. The
RBED scheduler uses a similar boost formula for sleep-
ing best-effort processes, as described in Section 5.1. The
I/O-bound process has a weight of 11 when it awakes, and
so its WCET is adjusted to : 2 <A: 60 <�: 11

11 D 1 < 4 110 ms. Af-
ter this computation, the weight of the I/O-bound pro-
cess is reduced to 1, the same as the CPU-bound pro-
cess, and the two processes share the CPU using 60 ms
quanta (WCET 4 : 2 <�: 60 < 1^

1 D 1 _ 4 60).

0

20

40

60

80

100

0 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Time (s)

I/O process
CPU process

(a) Standard Linux scheduler

0

20

40

60

80

100

0 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Time (s)

I/O process
CPU process

(b) RBED scheduler

Figure 5: I/O vs. CPU-bound processes on the
Linux and RBED schedulers

Figure 7 shows multiple soft real-time processes with
a single best-effort process. In Figures 7(a) and (b), the
three soft real-time processes have (period,rate) equal
to (0.2s,25%), (0.5s,30%) and (1.0s,35%). Each of the
four processes receive 25% of the CPU under Linux’s
scheduling algorithm. In this case, SRT-1 meets its dead-
lines, but the other two soft real-time processes miss all
of their deadlines. By contrast, RBED ensures that each
of the soft real-time processes receives its required re-

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

C
P

U
 T

im
e

(m
s)

Time (ms)

I/O process
CPU process

(a) Standard Linux scheduler

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

C
P

U
 T

im
e

(m
s)

Time (ms)

I/O process
CPU process

(b) RBED scheduler

Figure 6: Closeup of I/O vs. CPU-bound processes
on the Linux and RBED schedulers

sources (25% B 30% B 30%) and meets all of its deadlines
and the best-effort process receives the remaining re-
sources (10%). Figure 7(c) shows how RBED man-
ages SRT resources when the system undergoes load
changes, due to applications entering and leaving the sys-
tem. Initially SRT-1 runs with resource rate of 45% as a
best-effort process receives the leftover CPU (55%). Af-
ter 40 seconds, SRT-2 enters and is allocated 45%, while
the best-effort rate drops to 10%. At 80 seconds, SRT-3 en-
ters and forces the other two soft real-time processes to
decrease their resource rates so that the system is not over-
loaded. As a result, each soft real-time process receives
a resource rate of 31.6%, and the best-effort process re-
ceives the best-effort reservation β. After the 109 seconds
the three soft real-time processes begin to leave the sys-
tem and the rates of the other processes increase accord-
ingly.

Figure 8 shows RBED running two hard real-time
processes (20%, 60%), a soft real-time process (pe-
riod, rate)=(0.5s,40%), and a best-effort process. The
two hard real-time processes receive their required re-
sources, unaffected by the presence of the soft real-time
or best-effort processes. Because the available resource
for the soft real-time process is less than 40%, the sched-
uler dynamically extends its period, thus reducing its

8

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100

C
P

U
 T

im
e

(S
)

Time (S)

SRT-1(0.2s,25%)
SRT-2(0.5s,30%)
SRT-3(1.0s,35%)

BE

(a) Standard Linux scheduler

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100

C
P

U
 T

im
e

(S
)

Time (S)

SRT-1(0.2s,25%)
SRT-2(0.5s,30%)
SRT-3(1.0s,35%)

BE

(b) RBED scheduler

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e

(S
)

Time (S)

SRT-1(0.2s,45%)
SRT-2(0.5s,45%)
SRT-3(1.0s,45%)

BE

(c) RBED scheduler with varying resource allocations

Figure 7: Soft real-time processes on the Linux
and RBED schedulers

resource rate to 14%, and the best-effort process still re-
ceives at least β of the CPU, or 6% in this case.

Unlike best-effort process running in the background of
a real-time scheduler, RBED’s rate reservation and pseudo-
periods for best-effort processes guarantee that best-effort
response times will always be acceptable. Figure 9 shows
the response and completion times of a best-effort process
running with a real-time process in RBED and EDF-Linux.
Response time is the time between when a job enters the
ready queue and when it is first scheduled, and completion
time is the total time between when a job enters the ready
queue and is completed. The best-effort process has 10 ms
burst times and block times ranging from 1 microsecond to
1 second based on a pseudo-random distribution seeded by
the same initial value in all runs. The real-time process has

0

10

20

30

40

50

60

70

0 20 40 60 80 100

C
P

U
 T

im
e

(S
)

Time (S)

HRT-1(0.2s,20%)
HRT-2(1.0s,60%)

SRT(0.5s,40%)
BE

Figure 8: Scheduling hard real-time processes
with soft real-time and best-effort processes

a period of 190 ms and WCET=150 ms. The RBED sched-
uler ensures that the real-time process meets all of its dead-
lines and provides much better average best-effort response
and completion times than EDF-Linux.

0

50

100

150

200

250

300

0 50 100 150 200

R
es

po
ns

e
T

im
e

(m
S

)

Periods

RBED
edf/linux

RBED average
edf/linux average

(a) Response time

0

50

100

150

200

250

300

0 50 100 150 200

C
om

pl
et

io
n

T
im

e
(m

S
)

Periods

RBED
edf/linux

RBED average
edf/linux average

(b) Completion time

Figure 9: Synthetic best-effort process running
with real-time process(190 ms, 150 ms) on RBED
and EDF-Linux

In practice, many real-time systems use Rate Monotonic-
based static priority schemes to reduce the runtime over-
head of scheduling decisions. RBED uses EDF scheduling,
which can incur more overhead because priorities change
dynamically. However, EDF allows RBED to always uti-

9

lize up to 100% of the CPU for real-time processes. Ever-
increasing CPU speeds also enable somewhat more com-
plex decision-making without significantly increasing sys-
tem overhead. Measurements on our proof-of-concept im-
plementation show the time it takes to allocate resources
and schedule processes in RBED is typically two to two-
and-a-half times greater than in Linux. We feel that this
small amount of additional overhead is acceptable given the
added capabilities that RBED provides.

7. Related Work

There exist many scheduling algorithms and systems de-
veloped specifically to handle the workloads of hard real-
time or soft real-time applications. For scheduling a mix
of applications, a typical approach combines several al-
gorithms, by assigning priorities to each scheduler or us-
ing a high-level scheduler to dynamically determine which
scheduler selects a job. RAD differs by using a single sched-
uler for multiple classes of applications, and dynamically
adapting the requests made to the scheduler to meet the
needs of the tasks.

A predecessor to RAD is the CPU reservation [17]. CPU
reservations allow a process or server to receive a service
guarantee over a scheduling interval, and are often enforced
with a proportional-share scheduling algorithm [6, 12, 23].
Reservations make admission control policies simple, and
sharing algorithms provide isolation between tasks, shelter-
ing from overruns of other tasks. Reservations support ap-
plications with rates and deadlines requirements. Because
reservations are relatively static, they are not as flexible at
supporting all classes of applications. The Resource Ker-
nel [20] extends reservations to include multiple timing con-
straints, by advocating a separation between resource spec-
ification and resource management. The RAD model fur-
ther separates resource management into allocation and dis-
patching, making scheduling of resources flexible for mixed
workloads.

Proportional-share scheduling is widely employed
in real-time systems, because it is a natural computa-
tion model for periodic tasks. Proportional-share algo-
rithms have been adapted to solve specific scheduling la-
tency problems facing soft real-time applications such as
multimedia [8, 18]. Proportional-sharing of CPU is simi-
lar to flow-based packet schedulers such as WF2Q [3], be-
cause awareness of throughput is used to make scheduling
decisions. While the goal of most proportional-share algo-
rithms is maintaining constant rate (i.e. a fluid model) over
any interval, the CBS algorithm relaxes the fairness con-
straint [1], only ensuring that enough proportion is received
at deadlines. RBED uses this latter approach when schedul-
ing tasks with deadlines.

Proportional-share schedulers have been employed to
split the CPU between multiple scheduling algorithms—
this way a system may support multiple scheduling
paradigms simultaneously [9]. Each application is as-
signed to the scheduler using the policy best suited for its
type. In hierarchical schemes, lower-level schedulers re-
ceives bandwidth allocated by a higher-level scheduler. In
fact, many general-purpose operating systems use this ap-
proach to add real-time capability, running the best-effort
scheduler as a low-priority task in a fixed-priority sched-
uler [10, 13, 27].

A framework with goals similar to RAD, but with a dif-
ferent approach, is HLS [21]. HLS is used to compose arbi-
trary hierarchies of existing schedulers in order to execute
mixed class workloads. The framework provides rules for
determining if a given hierarchy of schedulers gives the de-
sired performance. Hierarchical scheduling poses many en-
gineering difficulties, and ultimately no matter how com-
plex the graph of schedulers, resulting in a single one-
dimensional schedule. RBED produces a schedule to han-
dle multiple classes of applications, without the added com-
plexity of understanding interactions of multiple schedulers.

The RED-Linux system [26] aims to support three
scheduling paradigms under a single scheduler. The
paradigms include priority, time and share-driven schedul-
ing. However, the scheduler emulates only one scheduling
paradigm at a time, and is limited in the classes it sup-
ports. RAD assumes application resource constraints are
independent of scheduling paradigm, and can support mul-
tiple classes of applications simultaneously.

In RBED, we must handle dynamic workloads, and han-
dle changes to the system by adjusting the rates and dead-
lines assigned to applications. For adaptive tasks that may
change their rate, Buttazzo et al. formulated an algorithm
in which rate changes are modeled using spring coeffi-
cients [7]. This novel approach incorporates constraints for
dynamically changing resource assignments. Our goal is
similar, but the approach used by RBED differs as all re-
source assignments are changed within an EDF framework.

8. Conclusions

Modern real-time and non-real-time systems are becom-
ing larger and more complex and at the same time multime-
dia applications have become ubiquitous in general-purpose
computing environments. These trends are driving a need
for integrated scheduling solutions that can simultaneously
provide the flexibility and responsiveness required for best-
effort processing, the guarantees required for hard real-time
processing, and the combination of guarantees and flexi-
bility required for various types of soft real-time process-
ing. The RAD model explicitly separates and dynamically
varies the resource allocation and resource delivery timing

10

provided by all schedulers. It explains the key differences
between these different classes of processes and provides a
model for how to develop schedulers capable of simultane-
ously executing processes from all of them.

Our prototype RBED scheduler is based on the RAD
model. It uses dynamic rate-based resource allocation and
dynamic period adjustment to achieve the separate control
of these two aspects of scheduling. Processes are managed
at runtime using a variant of EDF that enforces resource al-
locations.

Our results show that RBED is capable of simultane-
ously supporting hard real-time, soft real-time, and best-
effort processes. Its management of best-effort processes
closely mirrors that of Linux, its management of soft real-
time processes is better than that of Linux, and it pro-
vides guaranteed hard real-time performance. In addition,
RBED’s support of best-effort processes is shown to be bet-
ter than that of two-level hierarchical systems in which best-
effort processes are run in the background of hard real-time
processes, and RBED’s runtime overhead is only slightly
greater than that of Linux.

References

[1] L. Abeni, G. Lipari, and G. Buttazzo. Constant bandwidth
vs. proportional share resource allocation. In Proceedings
of the 1999 IEEE International Conference on Multimedia
Computing and Systems (ICMCS ’99), June 1999.

[2] S. K. Baruah, J. E. Gehrke, C. G. Plaxton, I. Stoica,
H. Abdel-Wahab, and K. Jaffay. Fair on-line scheduling of a
dynamic set of tasks on a single resource. Information Pro-
cessing Letters, 64(1):43–51, Oct. 1997.

[3] J. C. Bennett and H. Zhang. WF2Q: Worst-case fair weighted
fair queueing. In Proceedings of the IEEE INFOCOM, Mar.
1996.

[4] S. Brandt and G. Nutt. Flexible soft real-time processing in
middleware. Real-Time Systems, 22:77–118, 2002.

[5] S. Brandt, G. Nutt, T. Berk, and J. Mankovichr. A dynamic
quality of service middleware agent for mediating applica-
tion resource usage. In Proceedings of the 19th IEEE Real-
Time Systems Symposium (RTSS 1998), pages 307–317, Dec.
1998.

[6] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz. Move-
to-rear list scheduling: a new scheduling algorithm for pro-
viding QoS guarantees. In Proceedings of the 5th ACM In-
ternational Multimedia Conference, Nov. 1997.

[7] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management. IEEE
Transactions on Computers, 51(3):289–302, Mar. 2002.

[8] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(BVT) scheduling: Supporting latency-sensitive threads in a
general-purpose scheduler. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP ’99),
Dec. 1999.

[9] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU sched-
uler for multimedia operating systems. In Proceedings of
the 2nd Symposium on Operating Systems Design and Im-
plementation (OSDI’96), Oct. 1996.

[10] The Institute of Electrical and Electronics Engineers. IEEE
Standard for Information Technology-Portable Operating
System Interface (POSIX)-Part 1: System Application Pro-
gramming Interface (API)-Amendment 1: Realtime Exten-
sion [C Language], Std1003.1b-1993 edition, 1994.

[11] K. Jeffay and D. Bennett. A rate-based execution abstraction
for multimedia computing. In Proceedings of the Fifth Inter-
national Workshop on Network and Operating System Sup-
port for Digital Audio and Video, Apr. 1995.

[12] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations
and time constraints: Efficient, predictable scheduling of in-
dependent activities. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), pages
198–211, Oct. 1997.

[13] S. Khanna, M. Sebrée, and J. Zolnowsky. Realtime schedul-
ing in SunOS 5.0. In Proceedings of the Winter 1992
USENIX Technical Conference, pages 375—390. USENIX,
Jan. 1992.

[14] C. Lin. Managing the soft real-time processes in RBED.
Master’s report, University of California, Santa Cruz, Mar.
2003.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of
the Association for Computing Machinery, 20(1):46–61, Jan.
1973.

[16] J. W. Liu. Real-Time Systems. Prentice–Hall, 2000.
[17] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-

ity reserves: Operating system support for multimedia ap-
plications. In Proceedings of the 1994 IEEE International
Conference on Multimedia Computing and Systems (ICMCS
’94), pages 90–99, May 1994.

[18] J. Nieh and M. Lam. The design, implementation and evalua-
tion of SMART: A scheduler for multimedia applications. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles (SOSP ’97), Oct. 1997.

[19] S. Oikawa and R. Rajkumar. Portable RK: A portable re-
source kernel for guaranteed and enforced timing behavior.
In Proceedings of the Real-Time Technology and Applica-
tions Symposium (RTAS99), June 1999.

[20] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
kernels: A resource-centric approach to real-time systems. In
Proceedings of Multimedia Computing and Networking 2001
(MMCN ’98), Jan. 1998.

[21] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages 3–
14, London, UK, Dec. 2001. IEEE.

[22] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramam-
ritham. Mode change protocols for priority-driven pre-
emptive scheduling. The Journal of Real-Time Systems,
1(3):244–264, 1989.

[23] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Buruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource

11

allocation algorithm for real-time, time-shared systems. In
Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS 1996), pages 288–299, Dec. 1996.

[24] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in
priority pre-emptively scheduled systems. In Proceedings of
the 13th IEEE Real-Time Systems Symposium (RTSS 1992),
pages 100–109, Dec. 1992.

[25] H. Tokuda and T. Kitayama. Dynamic QoS control based
on real-time threads. In Proceedings of the Fourth Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video, pages 114–123, 1993.

[26] Y. Wang and K. Lin. Implementing a general real-time
scheduling framework in the RED-Linux real-time kernel.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS 1999), Phoenix, AZ, Dec. 1999.

[27] V. Yodaiken and M. Barabanov. Real-time Linux. In Pro-
ceedings of Linux Applications Development and Deploy-
ment Conference (USELINUX), Jan. 1997.

A. EDF with Non-constant Periods

The proof for Theorem 1 is a classical real-time scheduling
theory result [15]. Although it is well-known, a similar proof is
provided here for reference. This following proof is a modified
version of one offered by Liu [16]. The task model here differs
slightly because we assume that periods of subsequent jobs of the
same task need not be constant, as long as the utilization during
each period is. For instance, take task Ti with a utilization ui: given
jobs Ji ` n and Ji `m with periods pi ` n and pi `m, the execution time of
the respective jobs will equal ui pi ` n and ui pi `m.

In this model, at the end of the period of the nth job of Ji ` n
(deadline di ` n), the total CPU used by task Ti is

ui a di ` 1 b φi ced ui a di ` 2 b di ` 1 c/dgf�f�f�d ui a di ` n b di ` n h 1 ci ui a di ` n b φi c (A.1)

where φi is the start time of the first job.
Assume that at time di ` n job Ji ` n of task Ti misses a deadline.

If so, then it is possible to show that U j 1, which contradicts the
tenet that U k 1, and so the deadline cannot have been missed.
There are two possible cases to consider:

Case 1 In the first case, all other tasks have released their cur-
rent jobs after ri ` n. In this case, the total service time required by
Ti plus the service time of all jobs that were completed is:

X i ui a di ` n b φi c/d ∑
k lm i

uk a dk ` recent b φk c
where dk ` recent is the last deadline of task Tk occurring before di ` n.
For all tasks, φ n 0, so:

uidi ` n d ∑
k lm i

ukdk ` recent n X

The most recent deadline of every job completed by other tasks is
before di ` n, so dk ` recent k di ` n and:

uidi ` n d ∑
k lm i

ukdi ` n i Udi ` n n X

A missed deadline means the service time requested exceeds the
elapsed time, so X j di ` n and now Udi ` n j di ` n, which leads to the
contradiction U j 1.

Case 2 In the second case, some tasks T o have released their cur-
rent jobs before ri ` n. These tasks may have received CPU before
the release of Ji ` n. However, since we assume Ji ` n misses its dead-
line, there must exist an interval between t o k ri ` n and t, in which
only tasks releasing jobs at or after t o with deadlines before t are
executed. Consider the first release of any such job belonging to
task Tk to occur at φ ok. Over the interval t b t o , the total demand for
the processor is:

X i ui a di ` n b ri ` n c/d ∑
Tk p T h T q uk a dk ` recent b φ ok c

Where dk ` recent is the last deadline of task Tk occurring before t.
Because ri ` n n t o and φ ok n t o :

ui a di ` n b t o c/d ∑
Tk p T h T q uk a dk ` recent b t o c n X

dk ` recent k di ` n and:

ui a di ` n b t o c/d ∑
Tk p T h T q uk a di ` n b t o c n X

Call U o i ∑Tl p Ti `T h T q ` ul . The same argument from above follows.
When the deadline is missed, t i di ` n, so U o a t b t o c n X . A missed
deadline means the service time requested exceeds the elapsed
time, so X j t b t o , so we have U o a t b t o c j t b t o yielding the con-
tradiction U o j 1.

B. Feasibility of Decreasing Deadlines

The following is the remainder of the proof of Theorem 5. The
problem was set up in the description of the theorem in Section 4.2.
When the deadline of Ji ` n is decreased from di ` n to d oi ` n under the
constraints of the theorem, there is only a subset of tasks having
jobs at risk of missing deadlines after time d oi ` n, and all of these
jobs were released after ri ` n; we call these tasks, starting at their
first “at risk” job the set TR, and for all members the release of the
first at risk job occurs at φ n ri ` n.

At time di ` n, the service time requested by Ti since ri ` n is
ui a d oi ` n b ri ` n c . The service time of all jobs completed at some time
tm after d oi ` n is ui a di ` recent b d oi ` n c , where di ` recent is the most recent
completed deadline.

If a task Tm in TR misses a deadline of job Jm ` x at time dm ` x,
the total service time requested by TR and Ti since ri ` n is:

X i um a dm ` x b φm c/d ui a di ` recent b ri ` n crd
∑

Tk p TR ` k lm m

uk a dk ` recent b φk c
Because for all TR, φ n ri ` n:

um a dm ` x b ri ` n c/d ui a di ` recent b ri ` n c�d
∑

Tk p TR ` k lm m

uk a dk ` recent b ri ` n c n X

All drecent k dm ` x:

um a dm ` x b ri ` n csd ui a dm ` x b ri ` n cd ∑
Tk p TR ` k lm m

uk a dm ` x b ri ` n c n X

Set U o i ∑Tl p Ti `TR
ul . Since U o a dm ` x b ri ` n c n X , and the requested

time exceeds the elapsed time X j dm ` x b ri ` n, we have U otj 1, a
contradiction.

12

